人脸表情合成算法综述
作者:
作者单位:

河北工业大学人工智能与数据科学学院,天津 300400

作者简介:

通讯作者:

基金项目:

国家自然科学基金(60302018,61806071)资助项目;河北省自然科学基金(F2019202381, F2019202464)资助项目。


Survey on Facial Expression Synthesis Algorithms
Author:
Affiliation:

School of Artificial Intelligence,Hebei University of Technology,Tianjin 300400, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    人脸表情合成技术旨在保留人脸身份信息的情况下,对人脸表情进行重建,从而生成具有新表情的源人脸图像。深度学习的发展为表情合成提供了全新的解决方案,本文从特征提取、生成对抗网络的表情合成和实验评估方面综述了人脸表情合成技术的发展。首先,介绍了人脸特征的提取,这是表情合成任务中的一项关键技术,人脸特征可客观全面地描述人脸表情状态。其次,分析了表情合成领域中主流的基于深度学习的方法,主要针对生成对抗网络(Generative adversarial network,GAN)的发展现状,探讨了基于生成对抗网络的表情合成方法。通过对人脸数据集及实验评估方法的深入研究,总结出广泛使用的人脸表情合成数据集以及多种客观评价方法。最后根据现有方法所存在的问题,提出了未来工作的研究方向。

    Abstract:

    Facial expression synthesis technology is designed to reconstruct face image with new expressions while retaining identity information. The development of deep learning provides a new solution for the synthesis of facial expressions. This paper introduces the development of facial expression synthesis technology from the aspects of feature extraction, expression synthesis of generated antagonistic networks and experimental evaluation. Firstly, extraction of facial features is introduced, which is the key technology in expression synthesis. Facial features can describe facial expressions objectively and comprehensively. Secondly, the state-of-the-art facial expression synthesis methods based on deep learning are analyzed, in which methods based on generative adversarial network (GAN) are mainly discussed. By research on facial expression datasets and evaluation methods, the widely used facial expression datasets and objective evaluation methods are given in this paper. Finally, future work is discussed according to the existing problems of facial expression synthesis methods.

    表 2 人脸表情合成领域代表性算法对比总结Table 2 Comparison of the state-of-the-art facial expression synthesis algorithms
    图1 动作单元示例Fig.1 Example diagrams of AUs
    图2 动作单元组合示例Fig.2 Example diagrams of combination of AUs
    图3 人脸关键点示例Fig.3 Example diagrams of facial landmarks
    图4 人脸轮廓图示例Fig.4 Facial contour sketches
    图5 自编码器的一般结构Fig.5 General structure of AE
    图6 生成对抗网络Fig.6 Generative adversarial network
    图7 基于GAN的表情合成算法基础网络结构Fig.7 Basic networks of expression synthesis algorithm based on GAN
    图8 多层感知损失计算方法Fig.8 Calculation method of multi-layer perceived loss
    图9 循环一致性损失的计算Fig.9 Calculation of the cycle consistency loss
    图10 文献[74]提出的三元组损失Fig.10 Triple loss proposed in Ref.[74]
    表 1 人脸特征信息获取方式Table 1 Methods of extracting facial features
    表 3 人脸数据集对比总结Table 3 Comparison of facial expression datasets
    参考文献
    相似文献
    引证文献
引用本文

郭迎春,王静洁,刘依,夏伟毅,张吉俊,李学博,王天瑞.人脸表情合成算法综述[J].数据采集与处理,2021,36(5):898-920

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-09-08
  • 最后修改日期:2021-01-09
  • 录用日期:
  • 在线发布日期: 2021-09-25