基于Kalman滤波的GSC改进语音增强算法
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院,南京 210044;2.南京信息工程大学滨江学院,无锡 214105

作者简介:

通讯作者:

基金项目:

南京信息工程大学无锡校区研究生创新基金资助项目;国家自然科学基金 (61673222) 资助项目。


Improved GSC Speech Enhancement Algorithm Based on Kalman Filtering
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.Binjiang College, Nanjing University of Information Science and Technology, Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对广义旁瓣相消器(Generalized sidelobe canceller,GSC)存在非相干噪声消除性能不佳的缺陷,提出了采用后置Kalman滤波器改进的GSC去噪算法。该算法通过归一化最小均方算法校正自适应噪声对消器,并将滤除方向性干扰噪声后的语音信号输出到Kalman滤波器中,对残余背景噪声进行迭代最小均方误差(Minimum mean square error,MMSE)估计,抑制非相干噪声与麦克风阵元所产生的热噪声。经过在不同信噪比条件下客观语音质量评估(Perceptual evaluation of speech quality,PESQ)及语谱图分析后证明,与传统的GSC以及后置谱减法的改进GSC相比,本算法在噪声消除上的表现更为优越,且增强后信号也更接近目标信号。

    Abstract:

    In view of the poor performance of generalized sidelobe canceller (GSC) of incoherent noise cancellation, an improved GSC denoising algorithm with post-Kalman filter is proposed. The algorithm corrects the adaptive noise canceller through the normalized least mean square algorithm, outputs the speech signal after filtering the directional interference noise to the Kalman filter, and iterates the residual background noise with the minimum mean square error (MMSE) to suppress incoherent noise and thermal noise generated by microphone array elements. After the objective speech quality evaluation, perceptual evaluation of speech quality (PESQ), and spectrogram analysis under different signal-to-noise ratio conditions, it is proved that compared with the traditional GSC and the improved GSC of post-spectral subtraction, this algorithm is better at noise elimination. The performance is better, and the enhanced signal is closer to the target signal.

    图1 GSC结构图Fig.1 Structure schematic of GSC
    图2 算法流程图Fig.2 Flow chart of algorithm
    图3 Kalman滤波流程图Fig.3 Flow chart of Kalman filtering
    图4 麦克风阵列示意图Fig.4 Schematic of microphone array
    图5 PESQ结构框图Fig.5 Structure diagram of PESQ
    图6 不同信噪比下PESQ评估Fig.6 PESQ evaluation at different signal-to-noise ratios
    图7 不同算法语谱图对比Fig.7 Comparison of spectrogram of different algorithms
    参考文献
    相似文献
    引证文献
引用本文

郭业才,许雪,刘力玮.基于Kalman滤波的GSC改进语音增强算法[J].数据采集与处理,2021,36(5):884-890

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-09-17
  • 最后修改日期:2020-12-10
  • 录用日期:
  • 在线发布日期: 2021-09-25