一种基于多尺度特征和改进采样策略的异构网络对齐方法
作者:
作者单位:

太原理工大学大数据学院,晋中 030600

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61872260)资助项目。


A Method of Heterogeneous Network Alignment Based on Multi-scale Feature and Improved Sampling Strategy
Author:
Affiliation:

School of Big Data, Taiyuan University of Technology, Jinzhong 030600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    网络对齐是集成不同平台数据的重要途径。利用网络表示学习得到节点表征并建立节点匹配策略是当前异构网络对齐的主流技术之一。在这类研究中,网络表示模型和计算复杂性为两大关键问题。本文提出一种基于多尺度特征建模和优化采样策略的无监督网络对齐方法。首先,提出一种不同尺度的节点特征表示,提取节点特征;然后利用网络嵌入模型获得网络的初表征,在此基础上设计了一种基于节点重要性的采样策略选择地标节点,改进随机抽样策略;建立了基于地标节点的网络节点相似关系矩阵,引入低秩矩阵近似方法进行矩阵分解,得到节点表示;最后,根据节点表示的相似性对网络进行对齐。在3个数据集上的实验结果表明,本模型优于其他基线模型。

    Abstract:

    Network alignment is a key way to integrate data from different platforms. Obtaining node representations by using network representation learning and establishing node matching strategies is one of the current mainstream technologies for alignment of heterogeneous networks. In this kind of research, network representation model and computational complexity are two key problems. This paper proposes an unsupervised network alignment method based on multi-scale feature modeling and improved sampling strategy. Firstly, a node feature representation with different scales is proposed to extract node features. Then, a network embedding model is used to obtain the initial representation of the network. On this basis, a sampling strategy based on node importance is designed to select landmark nodes and improve the random sampling strategy. The similarity matrix of network nodes based on landmark nodes is established, and the low rank matrix approximation is introduced. Finally, the two networks are aligned according to the similarity of node representation. Experimental results on three data sets show that the proposed model is better than other baselines.

    表 1 数据集统计信息Table 1 Statistics of datasets
    表 4 基线和MU3S的MRR值Table 4 MRR of baseline and MU3S
    表 2 基线和MU3S的准确率Table 2 Accuracy of baseline and MU3S
    图1 MU3S的概述Fig.1 Overview of MU3S
    图2 超参K分析Fig.2 Analysis of hyper-parameter K
    Fig.
    图1 Scene graph of Lambert problemFig.1
    图2 Flowchart of Strategy-1 to reselect targetFig.2
    图3 Flowchart of Strategy-2 to avoid a collisionFig.3
    图4 Flowchart of Strategy-3 to restructure the formationFig.4
    图5 Trajectories of three strategiesFig.5
    图6 Pulse to avoid collisions of three strategiesFig.6
    图7 Comparison of fuel consumption with different strategies at different timeFig.7
    图8 Random location fuel consumption histogram of Strategy-1Fig.8
    图9 Random location fuel consumption histogram of Strategy-3Fig.9
    图10 Comparison of fuel consumption between Strategy-1 and Strategy-3 at random locationsFig.10
    表 3 基线和MU3S的Top-k accuracy值Table 3 Top-k accuracy of baseline and MU3S
    参考文献
    相似文献
    引证文献
引用本文

任尊晓,王莉.一种基于多尺度特征和改进采样策略的异构网络对齐方法[J].数据采集与处理,2021,36(4):779-788

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-10-08
  • 最后修改日期:2021-07-12
  • 录用日期:
  • 在线发布日期: 2021-07-25