基于轻量级深层卷积神经网络的花卉图像分类系统
作者:
作者单位:

1.三峡大学计算机与信息学院,宜昌 443002;2.三峡大学水电工程智能视觉监测湖北省重点实验室,宜昌443002;3.国药葛洲坝中心医院信息中心,宜昌 443002

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61402259,U1401252)资助项目;湖北省中央引导地方科技发展专项基金(2019ZYYD007)资助项目。


Flower Image Classification System Based on Lightweight DCNN
Author:
Affiliation:

1.College of Computer and Information Science, Three Gorges University, Yichang 443002, China;2.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering (Three Gorges University), Yichang 443002, China;3.Information Center, Sinopharm Gezhouba Central Hospital, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为解决深层卷积神经网络(Deep convolutional neural network, DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny-darknet与Darknet-reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。

    Abstract:

    To solve the problem that deep convolutional neural network (DCNN) models with heavy weights are difficult to be effectively applied on AI edge devices with weak computing power and high storage costs, a flower image classification system equipped with a lightweight DCNN is proposed with the help of a heavyweight DCNN during training process. First, an extended flower data set suitable for lightweight DCNN training is constructed by using a heavyweight DCNN combined with transferring learning, the crawler technology and the maximum connected region segmentation method. Then, two lightweight DCNN models, Tiny-Darknet and Darknet-Reference, oriented for devices with weak computer power are trained based on the specially built flower image gallery. Experimental results show that the two optimized models obtained can achieve 98.07% and 98.83% average classification accuracy respectively on Oxford102 flower dataset while keeping the model size as 4 MB and 28 MB, which have promising application potentials for AI edge computer devices.

    表 6 模型的准确率、尺寸与计算量对比Table 6 Comparison of model accuracy, size and calculation amount
    表 1 权重固定层数对花卉分类的影响Table 1 Influence of the weight-fixed layer number on flower classification
    表 8 不同嵌入式设备上性能对比Table 8 Performance comparison on different embedded devices
    表 3 扩充前后两种网络的分类准确率对比Table 3 Comparison of classification accuracy of networks trained with different data sets
    表 2 实验软硬件平台Table 2 Software and hardware platform for experiments
    表 7 数据集扩充前后两种网络的实际测试结果Table 7 Actual test results of two networks before and after dataset expansion
    图1 轻量级花卉分类系统Fig.1 Lightweight flower classification system
    图2 花卉的分割与识别流程图Fig.2 Flowchart of the flower segmentation and recognition
    图3 Oxford102花卉数据集示例Fig.3 An example of Oxford102 flower dataset
    图4 Darknet53结构图Fig.4 Structure of Darknet53
    图5 Darknet53在不同网络深度上的迁移学习示意图Fig.5 Transferring learning illustration of Darknet53 under different network depths
    图6 面向花卉分类的Darknet53网络的迁移学习Fig.6 Flower classification-oriented transferring learning for Darknet53 network
    图7 激活函数对Darknet53网络训练的影响Fig.7 Effect of different activation functions on Darknet53 network training
    图8 花卉图片的二值化Fig.8 Binarization of flower picture
    图9 掩码矩阵图Fig.9 Mask matrix
    图10 初步分割结果Fig.10 Preliminary segmentation results
    图11 Tiny-darknet与Darknet-Ref网络结构对比图Fig.11 Comparison of Tiny-darknet and Darknet-Ref network structures
    图12 两个数据集的图片数量分布Fig.12 Picture number distribution of two data sets
    图13 训练于两种数据集上的两种网络在102类花卉上的准确率Fig.13 Accuracy of two networks trained on two data sets for 102 kinds of flowers
    图14 增广处理示意图Fig.14 Illustration of the augmented processing
    图15 两种网络在扩充数据集上的训练损失Fig.15 Training losses of the two networks on the enhanced data set
    图1 UPA structureFig.1
    图2 Computational complexities of different methods versus different NFig.2
    图3 Computational complexities of different methods versus different snapshotsFig.3
    图4 Scatter figures of the proposed algorithmFig.4
    图5 RMSE performance versus snapshotFig.5
    图6 RMSE performance versus sensorsFig.6
    图7 Comparison of RMSE performance of different algorithmsFig.7
    表 4 训练参数设置值Table 4 Training parameter setting value
    表 5 不同网络在花卉测试集上的表现Table 5 Performance of different networks on the flower test set
    参考文献
    相似文献
    引证文献
引用本文

徐光柱,朱泽群,尹思璐,刘高飞,雷帮军.基于轻量级深层卷积神经网络的花卉图像分类系统[J].数据采集与处理,2021,36(4):756-768

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-08-28
  • 最后修改日期:2021-03-09
  • 录用日期:
  • 在线发布日期: 2021-07-25