基于密集连接自逆生成对抗网络的MR图像生成方法
作者:
作者单位:

南京航空航天大学自动化学院,南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61773205)资助项目。


MR Image Generation Method Based on Dense Connection Self-inverse Generative Adversarial Network
Author:
Affiliation:

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着医学成像技术的快速发展,医学图像在临床检测及科研领域得到了广泛的应用。针对临床图像数据集不完备的情况,本文提出了基于密集连接的自逆生成对抗网络用于实现核磁共振T1加权图像和T2加权图像相互生成的模型。该模型在自逆循环对抗生成网络的生成器模块中引入密集连接块结构,并采用U-net的多尺度融合框架,实现了T1与T2加权图像的互相生成。实验采用BraTS 2018数据集进行验证,生成图像的峰值信噪比与结构相似度最高分别可以达到22.78和0.8。基于密集连接块的生成器与基于U-net及ResNet的生成器模型的对比实验结果表明,基于密集连接块的生成模型性能更优。本文提出的基于密集连接自逆生成对抗网络的MR图像生成方法可以较好地改善T1或T2加权像缺失的问题,为临床论断提供更多的信息。

    Abstract:

    With the rapid development of medical imaging technology, medical images have been widely used in clinical detection and scientific research. In view of the insufficient clinical image data set, this paper proposes a generation model based on dense connection self-inverse generative adversarial network (GAN) to realize the mutual generation of T1- and T2-weighted MR images. Especially, the dense block is introduced into the generator module of self-inverse GAN model, and the multi-scale fusion framework of U-net is adopted to realize the mutual generation of T1 and T2 weighted MR images. The BraTS 2018 data set is used for validation and the peak signal-to-noise ratio and structure similarity of the generated images could reach 22.78 and 0.8, respectively. Contrast experimental results of different generators show that the model with the generator based on dense block has better performance than the model with the generator based on U-net or ResNet. The MR image generation method based on dense connection self-inverse GAN proposed in this paper can reduce the negative influence brought from missing T1 or T2 weighted images and provide more information for clinical judgment.

    表 8 Table 8 Modeling time and accuracy on testing dataset of different feature selections
    表 3 Table 3 Sample flight plan data
    表 1 DenseUnet生成器模型结构参数Table 1 Architecture parameters of the DenseUnet generator model
    表 11 Table 11 Evaluation indicators of kNN, LR, RF, DNN and WAPM
    表 10 Table 10 Confusion matrix for kNN, LR, RF, DNN and WAPM
    表 7 Table 7 Eigenvalue and contribution rate of component
    表 2 使用3种不同结构生成器生成图像的评价结果Table 2 Evaluation results of the generated images using three generators with different architectures
    图1 WAPM flow chartFig.1
    图2 Weather chart of CRFig.2
    图3 Spatial filter of trajectory segmentFig.3
    图4 Radar trajectories on 17 August 2018 in ChinaFig.4
    图5 Sample of raw flight plan dataFig.5
    图6 Schematic of avoidance predictorFig.6
    图7 Flight segment classificationFig.7
    图8 Machine learning classification modelFig.8
    图9 Gaussian distribution test samples from 17 August 2018Fig.9
    图10 Index histogram chartFig.10
    图1 CycleGAN模型结构及运行流程图Fig.1 Architecture and operation flow chart of CycleGAN model
    图2 自逆的CycleGAN模型及其生成器结构示意图Fig.2 Self-inverse CycleGAN model and architecture of its generator
    图3 密集连接块与残差块结构对比Fig.3 Architecture comparison between dense block and residual block
    图4 使用3种不同结构生成器生成的部分T1与T2图像及原始图像Fig.4 Examples of generated T1 and T2 images and original images using three generators with different architectures
    图5 3种结构的生成器生成图像的细节对比Fig.5 Detail comparison of the generated images using three generators with different architectures
    图6 3种结构的生成器生成含肿瘤图像的结果对比Fig.6 Comparison of the generated tumor images using three generators with different architectures
    表 4 Table 4 Recorded flight segment number
    参考文献
    相似文献
    引证文献
引用本文

傅雪,陈春晓,李东升,陈志颖.基于密集连接自逆生成对抗网络的MR图像生成方法[J].数据采集与处理,2021,36(4):739-745

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-10
  • 最后修改日期:2020-10-15
  • 录用日期:
  • 在线发布日期: 2021-07-25