基于粒子滤波算法的足底压力预测
作者:
作者单位:

1.华北理工大学机械工程学院,唐山 063210;2.河北君业科技股份有限公司,唐山 063000

作者简介:

通讯作者:

基金项目:

河北省自然科学基金(E2017209252)资助项目。


Prediction of Plantar Pressure Based on Particle Filter Algorithm
Author:
Affiliation:

1.School of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China;2.Hebei Junye Technology Co., LTD, Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对人体下肢运动状态识别精度低的问题,提出了一种基于足底压力的下肢运动状态识别预测方法。以EMED足底压力平板采集的不同步速下各40组足底压力数据为试验样本,通过分析足底压力特征参数,构建步态相位,建立足底步态周期关系,以及步态位移模型。下肢运动是非线性运动,采用步态周期模型结合粒子滤波算法实现足底压力预测。先对粒子群初始化获取先验概率密度函数,对预测压力进行估计,其次对状态向量检验,使用多元线性回归推导出预测足底压力。实验结果表明,在不同步态速度下,粒子滤波算法性能好,精确度达到97%以上,从而证明了足底压力预测方法的有效性。补充不同年龄、性别、体重的实验者的足底压力数据进行分析,预测精度均在97.5%以上,验证了预测算法的稳定性和精准性。

    Abstract:

    Aiming at the problem of low recognition accuracy of human lower limb motion state, a lower limb motion state recognition prediction method based on plantar pressure is put forward. The plantar pressure data of 40 groups at different walking speeds collected by EMED plantar pressure plate are used as test samples. By analyzing the characteristic parameters of plantar pressure, the gait phase is constructed, and the gait period relationship and the gait displacement model are established. The lower limb movement is nonlinear, and the plantar pressure prediction is realized by gait cycle model combined with particle filter algorithm. Firstly, the prior probability density function is obtained by particle swarm initialization, and the predicted pressure is estimated. Secondly, the state vector is tested, and the predicted plantar pressure is deduced by multiple linear regression. Experimental results show that the particle filter algorithm has good performance at different gait speeds with the accuracy of more than 97%, and the plantar pressure prediction is effective. The plantar pressure data of participants of different ages, genders and weights are added for analysis and the prediction accuracy is all over 97.5%, verifying the stability and accuracy of the prediction algorithm.

    表 6 不同步龄实验者步态数据Table 6 Gait data of subjects of different ages
    表 3 实验者人体信息Table 3 Human body information of subjects
    表 4 实验者不同步速下步态数据Table 4 Gait data of experimenter at different walking speeds
    表 1 行走过程中运动特征参数Table 1 Motion characteristic parameters during walking
    图1 人体运动支撑相步态周期Fig.1 Gait cycle of human movement support phase
    图2 实验者运动过程中运动参数变化Fig.2 Changes of motion parameters during the movement of the experimenter
    图3 足底压力粒子区域分布图Fig.3 Regional distribution of plantar pressure particles
    图4 粒子滤波预测算法流程图Fig.4 Flow chart of particle filter prediction algorithm
    图5 不同步速下足底压力数值估计及其误差曲线Fig.5 Numerical estimation and error curve of planar pressure at different walking speeds
    图6 不同性别和体重下足底压力数值估计及其误差曲线Fig.6 Numerical estimation and error curve of planar pressure for different genders and body weights
    图7 不同年龄下足底压力数值估计及其误差曲线Fig.7 Numerical estimation and error curves of plantar pressure at different ages
    图1 Causative factors extracted by grounded theoryFig.1
    图2 Analysis for an accident by the “2-4” modelFig.2
    图3 Causative factors with total degree greater than 15Fig.3
    图4 Network nodes with clustering coefficient greater than 0.25Fig.4
    表 2 步态参数Table 2 Gait parameters
    表 5 不同性别和体重实验者步态数据Table 5 Gait data of subjects with different genders and body weights
    参考文献
    相似文献
    引证文献
引用本文

曹更,玄兆燕,李德恒,崔冰艳.基于粒子滤波算法的足底压力预测[J].数据采集与处理,2021,36(4):730-738

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-04-26
  • 最后修改日期:2021-07-02
  • 录用日期:
  • 在线发布日期: 2021-07-25