集成学习机制下的鼻炎辅助诊断模型
作者:
作者单位:

1.上海理工大学光电信息与计算机工程学院,上海 200093;2.同济大学附属同济医院耳鼻咽喉头颈外科, 上海 200065

作者简介:

通讯作者:

基金项目:

国家自然科学基金(81973749,8187040043)资助项目;上海市卫生健康委先进适宜技术推广(2019SY071)资助项目;上海市科委中医引导类(18401903600)资助项目;上海市卫计委科研面上(201740093)资助项目。


Computer-Aided Diagnosis of Rhinitis’s Disease Based on Ensemble Learning
Author:
Affiliation:

1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2.Department of Otorhinolaryngology, Head and Neck Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    鼻炎(Rhinitis )是上呼吸道常见的慢性炎症,具有多种证型和体征。鼻炎临床分类具有样本类型多、类别不平衡特征,属于多输出分类范畴,常出现少数类样本识别率低、综合分类精度差的问题。为此,本文提出异质集成结构分类算法,将鼻炎多输出分类转化为多标签和多类别分类,采用集成学习算法构建异质集成分类器。该方法可根据子数据集中单一类标的不平衡度,自动调节集成森林基学习器数量和深度,有效减少不均衡样本对分类的影响,提高多数类和少数类的总体分类精度,进而提升集成模型的泛化能力。针对临床461例鼻炎样本进行交叉验证分类实验,本文分类模型灵敏度为74.9%,特异性为86.5%,准确度为92.0%,F1为0.783,AUC为0.953。与6种典型模型相比,本文模型具有更好的评估性能,更适合于鼻炎的早期临床诊断。

    Abstract:

    Rhinitis is a common chronic inflammation of the upper respiratory tract with a variety of symptoms and signs. The clinical classification of rhinitis is characterized by different types of instances and class imbalance, and belongs to multiple output classification. Low recognition rate and poor generalization performance often occur for minority class instances. Therefore, this article proposes a novel classification model based on heterogeneous integrated frame, which translates the multi-output classification of rhinitis to multi-label and multi-class classification, then builds a heterogeneous integrated classifier by ensemble learning algorithm. The proposed model can automatically adjust the number and depth of integrated forest learners according to the imbalance ratio of single class label in a subset. As a result, it can effectively reduce influence of class imbalance and improve classification performance of majority and minority class concurrently, further to enhance generalization of integrated classifiers. We conduct cross-validation classification experiments on 461 cases of clinical rhinitis. The outcomes show that the evaluation indicators of the proposed model, such as sensitivity, specificity, accuracy, F1 and AUC, are 74.9%,86.5%,92.0%,0.783 and 0.953, respectively. In comparison to other baseline methods, it achieves better evaluation performance and is more suitable for the early clinical diagnosis of rhinitis.

    表 1 各算法样本不平衡度b对比Table 1 Comparison of class imbalance ratio b for different methods
    表 4 ARF-OOBEE算法各分类预测评价指标Table 4 Evaluation Indicator comparison of ARF-OOBEE for different classes
    图1 集成学习OOBEE算法流程图Fig.1 Flow chart of integrated learning model of OOBEE
    图2 不均衡度在二类别样本中的比较Fig.2 Comparison of class imbalance ratio for binary classes
    图3 不均衡度在三分类样本中分布Fig.3 Distribution of class imbalance ratio for three classes
    图4 ARF模型参数与精度动态关系图Fig.4 Dynamic relationship diagram between model parameters and accuracy
    图5 ARF算法流程图Fig.5 Flow chart of ARF model
    图6 ARF-OOBEE模型结构框图Fig.6 Structure block diagram of ARF-OOBEE model
    图8 鼻炎病历分布Fig.8 Types of rhinitis among patients
    图9 原始样本的Anderson正态分布检验Fig.9 Anderson normal distribution test of the original sample
    图10 多种分类器ROC曲线对比Fig.10 ROC curve for comparison different classifiers
    图11 多种分类器PR 曲线对比Fig.11 PR curve comparison for different classifiers
    图1 Typical study configurationFig.1
    图2 Signal of drones and environmental WiFiFig.2
    图3 Cepstrum and spectrum details of drone signalFig.3
    图4 Workflow of detection and classification on dronesFig.4
    图5 Outdoor experimentFig.5
    图6 Detection results of three modelsFig.6
    图7 Classification results of KNNFig.7
    图8 Classification results of SVMFig.8
    图9 Classification results of BPNNFig.9
    表 3 多种分类方法的综合评价指标Table 3 Comprehensive evaluation indicator of different classification methods
    表 2 各种降维方法效果对比Table 2 Comparison of effects of various dimensional reduction methods
    参考文献
    相似文献
    引证文献
引用本文

杨晶东,孟一飞,荀镕基,余少卿.集成学习机制下的鼻炎辅助诊断模型[J].数据采集与处理,2021,36(4):684-696

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-08-29
  • 最后修改日期:2020-11-26
  • 录用日期:
  • 在线发布日期: 2021-07-25