机器学习在预测人体运动地面反作用力中的应用综述
作者:
作者单位:

1.北京体育大学运动人体科学学院,北京100084;2.南京体育学院运动健康学院,南京 210014;3.北京体育大学中国运动与健康研究院,北京100084

作者简介:

通讯作者:

基金项目:

国家自然科学基金(81572212,30870600)资助项目。


Application of Machine-Learning in Predicting Ground Reaction Force of Human Motion: A Review
Author:
Affiliation:

1.College of Human Movement Science, Beijing Sport University, Beijing 100084, China;2.School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China;3.China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    三维地面反作用力(Ground reaction force, GRF)是人体运动分析的重要测量参数,但其测量受到一定限制。本文系统归纳了机器学习在预测GRF中的应用现状。以“ground reaction force”与“machine learning”“neural network”组合为关键词检索,筛选利用机器学习模型预测GRF的研究。共纳入14篇研究,研究的动作包括步行、跑步及个别专项动作,利用不同的学习算法来预测GRF,输入参数包括足底压力参数、运动捕捉获取的人体运动学参数等,均采用相关系数及均一化均方根误差作为评价指标。结果显示,利用机器学习预测GRF可获得极好的预测精度。利用机器学习模型预测GRF在人体运动中的应用还有待更多的研究,如增加用于机器学习的数据集大小可进一步提高学习模型的预测性能等。

    Abstract:

    The 3D ground reaction force(GRF) is an important measurement parameter in human motion analysis, but its measurement is limited. The application status of machine-learning in predicting GRF is systematically reviewed. Searching with the combination of “ground reaction force”,“machine learning”and“neural network as the keyword, fourteen studies of predicting GRF by using machine learning model are screened. The motion tasks in these studies include walking, running and several special tasks in sports. Different learning algorithms are used to predict the GRF, whose input parameters include plantar pressure parameters, human motion parameters obtained by motion capture. The relative root mean square and cross-correlation coefficient are adopted as evaluation indicators. The results show that using the machine learning to predict GRF can obtain excellent prediction accuracy. The application of predicting GRF by using machine learning models in human motion needs more research, such as increasing the sizes of datasets for machine learning to further improve the prediction performance of learning models.

    表 8 Table 8 Test time of engine #8
    表 10 Table 10 RMSE of two parameters by three algorithms
    表 7 Table 7 Training time
    表 2 Table 2 RMSE and MAE for all experiments
    表 5 Table 5 Specification of the selected measurement sensor signals based on C-MAPSS
    表 1 预测GRF的机器学习模型的方案Table 1 Projects of machine learning model for predicting GRF
    图1 Influence of regularization parameter C on RMSEFig.1
    图2 Influence of the number of layer nodes on RMSEFig.2
    图3 Influence of percentage of training samples on RMSEFig.3
    图4 Simplified diagram of aircraft engineFig.4
    图6 Performance parameter variation with cycleFig.6
    图7 EGT prediction resultsFig.7
    图8 N1 prediction resultsFig.8
    图1 文献筛选流程Fig.1 Search strategy and literature screening
    表 4 Table 4 RMSE under multi-step prediction
    表 3 Table 3 Training time and number of iterations for all experiments
    表 6 Table 6 RMSE and MAE of parameter prediction of engines #1—#10
    表 9 Table 9 Test time of engine #2
    表 11 Table 11 MAE of two parameters by three algorithms
    参考文献
    相似文献
    引证文献
引用本文

冯茹,杨辰,李翰君,刘卉.机器学习在预测人体运动地面反作用力中的应用综述[J].数据采集与处理,2021,36(4):639-647

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-11-27
  • 最后修改日期:2021-04-06
  • 录用日期:
  • 在线发布日期: 2021-07-25