基于心冲击图和BP神经网络的心率异常分类研究
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院,南京 210044;2.南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京210044

作者简介:

通讯作者:

基金项目:

国家自然科学基金(41605120)资助项目;江苏高校优势学科Ⅲ期建设工程(PAPD)资助项目;江苏高校品牌专业建设工程二期(电子信息工程)资助项目;江苏省高等学校大学生实践创新训练计划 ( 201910300076Y) 资助项目。


Abnormal Heart Rate Classification Based on Ballistocardiogram and BP Neural Network
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science &Technology, Nanjing 210044, China;2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    心率变异性(Heart rate variability, HRV)被广泛用于临床自主神经系统评估和心率异常分类,传统的HRV分析基于心电图(Electrocardiogram, ECG)、光容积图(Photoplethysmography, PPG)和远程光容积图(Remote PPG, RPPG),这些方法存在诸多不足:(1)ECG检测需在皮肤涂抹刺激性的耦合剂并附加电极,不宜长期监测且ECG设备价格昂贵;(2)PPG和RPPG测量时存在环境光学噪声,以及肤色不同形成的个体差异性较大;(3)ECG和PPG检测属于接触式,容易带给患者不适感。基于以上不足,提出了一种基于心冲击图(Ballistocardiogram,BCG)的HRV分析方法,该方法降低了传统设备用于HRV分析的成本,利用非接触检测减轻了患者不适感,独特的检测原理避免了个体差异性问题,在长期心血管疾病检测中起着至关重要的作用。实验中采用逆传播(Back propagation,BP)神经网络模型对心率异常进行预测分类,准确率达到80%,表明了该方法的先进性和可靠性。

    Abstract:

    Heart rate variability (HRV) is widely used in clinical autonomic nervous system assessment and classification of abnormal heart rate. Traditional HRV analysis is based on electrocardiogram (ECG), photoplethysmography (PPG) and remote PPG (RPPG). However, these methods have the following disadvantages: (1) The detection of ECG requires the application of irritating coupling agent on the skin and additional electrodes, which is not suitable for long-term monitoring, and the ECG equipment is expensive; (2) there is ambient optical noise in the PPG and RPPG measurement, and individual difference due to skin color is obvious; (3) the detections of ECG and PPG belong to contact type, which can easily bring discomfort to patients. Based on the shortcomings of the above methods, a HRV analysis method based on ballistocardiogram (BCG) is proposed. It reduces the cost of traditional equipment for HRV analysis, and uses non-contact detection to alleviate the discomfort of patients. The unique detection principle avoids the problem of individual differences, which plays a vital role in long-term cardiovascular disease prediction. In the experiment, the model of back propagation (BP) neural network is used to predict and classify abnormal heart rate with an accuracy rate of 80%, showing the advancement and reliability of the proposed method.

    图1 不同心跳类别RR间隔的数值范围Fig.1 Numerical range of RR interval for different heart rate categories
    图2 RF模型分类结果Fig.2 RF model classification result
    图3 BP训练模型ACC对比Fig.3 ACC comparison of BP training model
    图4 BP神经网络的拓扑结构Fig.4 Topological structure of BP neural network
    图5 BP算法流程图Fig.5 Flow chart of BP algorithm
    图6 BP分类模型预测结果Fig.6 Prediction results of BP classification model
    图7 RF与BP分类模型混淆矩阵Fig.7 Confusion matrices of RF and BP classification models
    图8 BP与RF模型F1-score对比模型Fig.8 Comparison of F1-score between BP and RF models
    图9 系统测试平台Fig.9 System test platform
    图10 HRV参数提取流程图Fig.10 Flow chart of HRV parameter extraction
    表 1 样本数据划分Table 1 Sample data division
    表 4 BP分类模型对BCG心率异常预测结果Table 4 Abnormal beart rate prediction of BCG based on BP classification model
    表 2 BP与RF分类模型的相关评估指标结果Table 2 Related evaluation index results of BP and RF classification models
    表 3 BCG信号HRV指标数据样本Table 3 HRV indicator data samples based on BCG signal
    参考文献
    相似文献
    引证文献
引用本文

张加宏,孟辉,谢丽君,冒晓莉,周炳宇.基于心冲击图和BP神经网络的心率异常分类研究[J].数据采集与处理,2021,36(3):565-576

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-08-14
  • 最后修改日期:2020-10-12
  • 录用日期:
  • 在线发布日期: 2021-05-25