基于卷积自编码器分块学习的视频异常事件检测与定位
作者:
作者单位:

南京师范大学计算机与电子信息学院/人工智能学院,南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(41971343)资助项目。


Convolutional Auto-Encoder Patch Learning Based Video Anomaly Event Detection and Localization
Author:
Affiliation:

School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置。但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位。本文提出了一种基于卷积自编码器分块学习的视频异常事件检测与定位方法,首先将视频帧进行均匀划分,提取视频帧中每一块的光流和方向梯度直方图(Histogram of oriented gradient, HOG)特征,然后为视频中的不同图块分别设计卷积自编码器以学习正常运动模式特征,最后在异常事件检测过程中利用卷积自编码器的重构误差大小进行异常判断。该方法可以有效地针对视频不同区域进行特征学习,提升了异常事件定位的准确度。所提方法在UCSD Ped1、UCSD Ped2、CUHK Avenue三个公开数据集上进行实验,结果表明该方法能够准确定位异常事件,并且帧级别AUC(Area under the curve)平均提升了5.61%。

    Abstract:

    Video anomaly event detection and localization aim to detect abnormal events and lock its localization in the video. However, the video scenes are complex and diverse, and the localizations where anomaly events occur are random and changeable, which makes it difficult to accurately locate the occurred abnormal events. This paper proposes a video anomaly event detection and localization method based on convolutional auto-encoder patch learning. Firstly, we divide the video frames evenly into patches and extract the optical flow and the histogram of oriented gradient (HOG) feature of each patch. Then, at the different patches in the video, we individually design a convolutional auto-encoder to learn the feature in the normal motion mode. During the anomaly event detection process, the reconstruction loss of the convolutional auto-encoder is used for anomaly detection. The proposed method can effectively perform feature learning for different regions of the video and improve the accuracy of anomaly event localization. Experimental results on three public datasets, UCSD Ped1, UCSD Ped2, and CUHK Avenue, demonstrate that the frame level AUC (area under the curve) of this method is increased by 5.61% on average and can accurately locate anomaly events.

    表 3 本文所提方法与其他异常检测方法的比较Table 3 Comparison of our method with other anomaly detection methods
    表 2 α和β取不同值时AUC值的比较Table 2 Comparison of AUC with different values of α and β
    图1 视频异常事件检测与定位方法处理流程Fig.1 Pipeline of video anomaly event detection and localization method
    图2 AD-ConvAE的网络结构图Fig.2 Overview of AD-ConvAE structure
    图3 α和β取不同值时的ROC曲线图Fig.3 ROC curves when α and β take different values
    图4 UCSD Ped1和UCSD Ped2数据集上的可视化异常事件检测结果示例Fig.4 Visualization of abnormal event detection results on the UCSD Ped1 and UCSD Ped2 datasets
    图5 CUHK Avenue数据集上的可视化异常事件检测结果示例Fig.5 Visualization of visual abnormal event detection results on the CUHK Avenue dataset
    参考文献
    相似文献
    引证文献
引用本文

李欣璐,吉根林,赵斌.基于卷积自编码器分块学习的视频异常事件检测与定位[J].数据采集与处理,2021,36(3):489-497

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-10-20
  • 最后修改日期:2020-12-09
  • 录用日期:
  • 在线发布日期: 2021-05-25