基于双分支网络特征融合的车辆重识别方法
作者:
作者单位:

山东建筑大学计算机科学与技术学院,济南250000

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61671274)资助项目。


Vehicle Re-identification Method Based on Double-Branch Network Feature Fusion
Author:
Affiliation:

Department of Computer Science and Technology, Shandong University of Architecture, Jinan 250000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    车辆重识别目的是通过不同的摄像机来识别同一辆车。但是由于车辆图像类内差异性大、类间相似性大,使得车辆重识别成为一个极具挑战性的任务。本文提出了一个基于双分支网络特征融合的车辆重识别方法来解决这一问题。该方法使用2个分支和批擦除策略提取并融合全局特征和局部特征,以突出车辆图像的类内相似性和类间差异性;并且采用圆损失代替传统的三元组损失和交叉熵损失的组合来构造目标函数。最后使用本文方法在VeRi-776和VehicleID两个公共数据集上进行实验,结果表明其检索精度比现有方法提高5%左右,证明了本文方法的有效性。

    Abstract:

    The purpose of vehicle re-identification(vehicle reID)is to identify the same vehicle through different cameras. However, vehicle reID is a very challenging task due to the large intra-class difference and the large inter-class similarity of vehicle images. This paper proposes a vehicle reID method based on double-branch network feature fusion to solve this problem. The method uses two branches and batch drop block strategies to extract and fuse global features and local features for highlighting the intra-class similarities and inter-class differences. At the same time, the method uses circle loss terms instead of the traditional triplet loss terms and cross-entropy loss terms to construct the objective function. Extensive experiments of the method are conducted on the two public datasets VeRi-776 and VehicleID, and results show that its search accuracy is improved by about 5% compared with the existing methods, which verifies the effectiveness of the method.

    表 2 不同方法在VehicleID数据集的实验结果Table 2 Results on the VehicleID dataset using different methods
    表 4 VehicleID数据集上圆损失项的性能对比结果Table 4 Results of circle loss term on the VehicleID dataset
    表 3 VeRi-776数据集上圆损失项的性能对比结果Table 3 Results of circle loss term on the VeRi-776 dataset
    图1 车辆类内差异性与类间相似性示意图Fig.1 Schematic diagram of intra-class differences and inter-class similarity of vehicles
    图2 FDNet网络结构Fig.2 FDNet network structure
    图3 FDNet在VeRi-776数据集上的可视化结果Fig.3 Visualization images of FDNet method on VeRi-776 dataset
    图4 两个数据集上的CMC曲线Fig.4 CMC curves on two datasets
    表 1 不同方法在VeRi-776数据集上的实验结果Table 1 Results on the VeRi-776 dataset using different methods
    参考文献
    相似文献
    引证文献
引用本文

张雪,孟令灿,聂秀山.基于双分支网络特征融合的车辆重识别方法[J].数据采集与处理,2021,36(3):468-476

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-10-28
  • 最后修改日期:2020-12-26
  • 录用日期:
  • 在线发布日期: 2021-05-25