基于深度学习的时空序列预测方法综述
作者:
作者单位:

陆军工程大学指挥控制工程学院, 南京 210007

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62076251)资助项目。


Review of Spatio-Temporal Sequence Prediction Methods Based on Deep Learning
Author:
Affiliation:

Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法。深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义。在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和发展历程,介绍了时空序列的相关定义、特点及分类;然后按照时空序列数据的类别介绍了基于网格数据的预测方法、基于图数据的预测方法和基于轨迹数据的预测方法;最后总结了上述预测方法,并对当前面临的一些问题及可能的解决方案进行了探讨。

    Abstract:

    With the vigorous development of data acquisition technology, spatio-temporal data in various fields are accumulating continuously, so it is urgent to explore efficient spatio-temporal data prediction methods. Deep learning is a machine learning method based on artificial neural networks, which can effectively process large-scale complex data. Therefore, it is of great significance to study the spatio-temporal sequence prediction methods based on deep learning. In this context, the existing prediction methods are summarized. First, the application background and development history of deep learning in spatio-temporal sequence prediction are reviewed, and the related definitions, characteristics and classification of spatio-temporal sequence are introduced. Then according to the categories of spatio-temporal sequence data, this paper introduces the prediction methods based on grid data, on graph data, and on trajectory data. Finally, the above prediction methods are summarized, and some current problems and possible solutions are discussed.

    表 3 基于深度学习的时空序列预测方法总结Table 3 Summary of spatio-temporal sequence prediction methods based on deep learning
    表 1 6种代表性的时空序列数据集Table 1 Six representative spatio-temporal sequence datasets
    表 2 部分时空序列预测算法特征提取对比Table 2 Feature extraction and comparison of partial spatio-temporal sequence prediction algorithms
    图1 东北三省近18年人均地区生产总值时空序列示意图Fig.1 Schematic diagram of the spatio-temporal sequence of per capita GDP in the three northeastern provinces in the past 18 years
    图2 时空序列预测的应用Fig.2 Applications of spatio-temporal sequence prediction
    图3 北京2017年7月1日前半小时流入人流量热力图Fig.3 Heatmap of inflow of people in the first half hour of July 1, 2017 in Beijing
    参考文献
    相似文献
    引证文献
引用本文

潘志松,黎维.基于深度学习的时空序列预测方法综述[J].数据采集与处理,2021,36(3):436-448

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-01-20
  • 最后修改日期:2021-05-10
  • 录用日期:
  • 在线发布日期: 2021-05-25