小目标检测研究进展
作者:
作者单位:

重庆邮电大学计算机科学与技术学院,重庆 400065

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62036007,62050175)资助项目。


Recent Advances in Small Object Detection
Author:
Affiliation:

College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    小目标检测长期以来是计算机视觉中的一个难点和研究热点。在深度学习的驱动下,小目标检测已取得了重大突破,并成功应用于国防安全、智能交通和工业自动化等领域。为了进一步促进小目标检测的发展,本文对小目标检测算法进行了全面的总结,并对已有算法进行了归类、分析和比较。首先,对小目标进行了定义,并概述小目标检测所面临的挑战。然后,重点阐述从数据增强、多尺度学习、上下文学习、生成对抗学习以及无锚机制等方面来提升小目标检测性能的方法,并分析了这些方法的优缺点和关联性。之后,全面介绍小目标数据集,并在一些常用的公共数据集上对已有算法进行了性能评估。最后本文对小目标检测技术的未来发展方向进行了展望。

    Abstract:

    Small object detection has long been a difficult and hot topic in computer vision. Driven by deep learning, small object detection has achieved a major breakthrough and has been successfully applied in national defense security, intelligent transportation, industrial automation, and other fields. In order to further promote the development of small target detection, this paper makes a comprehensive summary of small target detection algorithms, and makes a reasonable classification, analysis and comparison of existing algorithms. Firstly, this paper defines the small object and summarizes the challenges of small object detection. Then, this paper focuses on the algorithms to improve the performance of small object detection from the aspects of data augmentation, multi-scale learning, context learning, generative adversarial learning, anchor-free mechanism, and analyzes the advantages and disadvantages, and relevance of these algorithms. Finally, this paper looks forward to the future development directions of small object detection.

    表 6 Tsinghua-Tencent 100K数据集上的性能评估Table 6 Performance evaluation on Tsinghua-Tencent 100K dataset
    表 1 适用于小目标的5种数据增强方法Table 1 Five data augmentation methods for small objects
    表 4 WiderFace数据集上的简要性能评估Table 4 Performance evaluation on WIDER FACE dataset
    图1 小目标匹配的锚框数量相对大/中尺度的目标更少Fig.1 Small-size objects match with fewer anchors than large/medium objects
    图2 多尺度学习的4种方式Fig.2 Four ways of multi-scale learning
    图3 上下文在目标检测中的探索历程Fig.3 Exploration of context in object detection
    图4 无锚机制的4种形式Fig.4 Four ways of anchor-free methods
    表 2 小目标检测数据集Table 2 Small object detection datasets
    参考文献
    相似文献
    引证文献
引用本文

高新波,莫梦竟成,汪海涛,冷佳旭.小目标检测研究进展[J].数据采集与处理,2021,36(3):391-417

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-04-20
  • 最后修改日期:2021-05-10
  • 录用日期:
  • 在线发布日期: 2021-05-25