改进型模糊神经网络PID控制器的设计与仿真
作者:
作者单位:

贵州大学大数据与信息工程学院,贵阳 550000

作者简介:

通讯作者:

基金项目:

国家自然科学基金(11264007)资助项目。


Design and Simulation of Improved Fuzzy Neural Network PID Controller
Author:
Affiliation:

College of Big Data and Information Engineering, Guizhou University, Guiyang 550000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统PID控制器存在控制参数无法在线调整、控制效果差等问题。为了解决这些问题,本文提出了一款基于改进型模糊神经网络的智能PID控制器。该控制器不仅融合了模糊控制的推理能力和神经网络的学习能力,还创造性地将模糊规则参数化,使模糊规则也可以在线调整,进而提高了控制的准确性。同时,通过建构新型激活函数——IThLU函数,有效地避免梯度消失及梯度爆炸现象的发生,提高了控制的响应性。最终的仿真实验结果表明:这种改进型模糊神经网络智能PID控制器可以实现控制参数的在线实时调整,提高系统的响应性、稳定性和准确性,是对PID控制算法的有效改进。

    Abstract:

    Traditional PID controllers have problems of the inability to adjust online control parameters, poor control effects, etc. so this paper proposes an intelligent PID controller based on an improved fuzzy neural network. The controller not only combines the reasoning ability of fuzzy control and the learning ability of neural network, but also creatively parameterizes the fuzzy rules so that the fuzzy rules can also be adjusted online, thereby improving the accuracy of control. At the same time, by constructing a new type of activation function—IThLU function, it can effectively avoid the occurrence of gradient disappearance and gradient explosion, and improve the responsiveness of control. The final simulation experiment results show that the intelligent PID controller of improved fuzzy neural network can realize online real-time adjustment of control parameters, improve the responsiveness, stability and accuracy of the system, and is an effective improvement to the PID control algorithm.

    表 1 评价指标Table 1 Evaluation index
    图1 模糊神经网络结构图Fig.1 Structure of fuzzy neural network
    图2 几个激活函数的比较Fig.2 Comparison of several activation functions
    图3 IFNN-PID系统结构图Fig.3 Structure of IFNN-PID system
    图4 阶跃响应Fig.4 Step response
    图5 代价函数曲线Fig.5 Cost function curves
    图6 IFNN-PID控制器的各参数在线调整曲线Fig.6 Several parameter online adjustment curve of IFNN-PID controller
    参考文献
    相似文献
    引证文献
引用本文

吕晓丹,吴次南.改进型模糊神经网络PID控制器的设计与仿真[J].数据采集与处理,2021,36(2):365-373

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-04
  • 最后修改日期:2020-12-27
  • 录用日期:
  • 在线发布日期: 2021-03-25