基于双匹配配准算法的多重复纹理图像拼接
作者:
作者单位:

1.贵州大学机械工程学院,贵阳 550025;2.贵阳市公安司法鉴定中心,贵阳 550025;3.北京交通大学信息科学研究所,北京 100044

作者简介:

通讯作者:

基金项目:

中央高校基本科研业务费(2019YJS039)资助项目; 贵州省自然科学基金(黔科合基础[2019]1064)资助项目;国家自然科学基金 (62062021, 61872034)资助项目;北京市自然科学基金 (4202055) 资助项目。


Registration Algorithm of Multi-repeat Texture Images Based on Double-Match Image Registration
Author:
Affiliation:

1.School of Mechanical Engineering, Guizhou University, Guiyang 550025, China;2.Criminal Examination Center of Guiyang Security Bureau, Guiyang 550025, China;3.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对目前图像配准算法对于多重复纹理图像配准位置偏差的问题,提出图像内自匹配与图像间互匹配相结合的双匹配配准(Double-match image registration, DMIR)算法。首先在对待匹配图像提取尺度不变特征转换(Scale-invariant feature transform, SIFT)特征之后,通过K-近邻(K-nearest neighbor, KNN)算法进行特征匹配,分别得到同一张图片的自匹配点对和不同图像间的初始互匹配点对;然后对初始互匹配点对进行相关性计算得到最正确的匹配点对,并根据最正确的匹配点对与自匹配点对的位置关系确定更多的正确匹配点对,最后计算仿射矩阵对图像进行拼接。实验结果显示经过DMIR算法获得的正确匹配点对更均匀、更准确,且拼接图像效果更好。

    Abstract:

    To solve the problem of the registration position deviation for multi-repeat texture images,a double-match image registration (DMIR) algorithm is proposed. The DMIR algorithm not only considers the matching result of one graph with another graph,but also considers the matching result of a graph with its own features. Firstly,the key points are matched by the K-nearest neighbor (KNN) algorithm after extracting the feature points by the scale-invariant feature transform (SIFT) algorithm. As a result,the self-matching point pairs of the same image and the initial matching point pairs between different images are obtained respectively. Secondly,the best matching point pairs are obtained by computing the correlation between different points of the initial matching point pairs. Thirdly,the correct matching point pairs of the two images are determined,which depend on the positional relationship between the best matching point pairs and the self-matching point pairs. Lastly,the affine matrix is calculated according to the matching point pairs,and the image stitching is performed. The experimental results show that the matching point pairs obtained by the DMIR algorithm are more accurate, and the stitched images are better than others.

    表 1 匹配点对准确率Table 1 Accuracy of matching point pairs
    表 2 算法时间比较Table 2 Comparison of algorithm time
    图1 超市图像匹配Fig.1 Supermarket image matching
    图2 种子点与匹配点对的位置关系示意图Fig.2 Position relationship between seed points and matching point pairs
    图3 图像配准过程Fig.3 Image registration process
    图4 图像匹配结果Fig.4 Image matching results
    图5 图像匹配点对数量对图像拼接质量的影响Fig.5 Influence of the number of image matching points on the quality of image stitching results
    图6 不同算法的特征点匹配结果对比图Fig.6 Comparison of feature points matching results of different algorithms
    图7 不同匹配算法处理后的拼接图Fig.7 Image stitching results by different algorithms
    图8 多张图像的拼接结果Fig.8 Stiching results of multiple images
    参考文献
    相似文献
    引证文献
引用本文

张琳娜,陈建强,吴妍,张悦,岑翼刚.基于双匹配配准算法的多重复纹理图像拼接[J].数据采集与处理,2021,36(2):334-345

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-03
  • 最后修改日期:2020-09-28
  • 录用日期:
  • 在线发布日期: 2021-03-25