基于K-means和SOM的水下传感器数据采集方法
作者:
作者单位:

1.电子科技大学电子科学技术研究院,成都 611731;2.电子科技大学通信抗干扰技术国家级重点实验室,成都 611731

作者简介:

通讯作者:

基金项目:


Data Collection Method of Underwater Sensor Based on K-means and SOM
Author:
Affiliation:

1.Institute of Electronic Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China;2.State Key Laboratory of Communication Anti-interference Technology, University of Electronic Science and Technology, Chengdu 611731, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着海洋资源勘探和海洋污染物监控工作的开展,水文数据的监测和采集等已经成为重要的研究方向。其中,水下无线传感器网络在水文数据采集过程中起着举足轻重的作用。本文研究的是水下无线传感器二维监测网络模型中,传感器节点数据采集的问题,其设计方法是通过自组织映射(Self-organizing mapping,SOM)对传感器节点进行路径最优化处理,结合优化的路径图形和K-means算法找到路径内部聚合点,利用聚合点和传感器的节点得到传感器通信半径内的数据采集点,最后通过SOM得到水下机器人(Autonomous underwater vehicle,AUV)到各个数据采集点采集数据的最优路径。经过实验验证,在水下1 200 m×1 750 m范围内布置52个传感器节点的情景下,数据采集点相比于传感器节点路径规划采用相同的采集顺序得到的路径优化了6.7%;对数据采集点重新进行自组织路径规划得到的路径比传感器结点路径的最优解提高了12.2%。增加传感器节点的数量,其结果也大致相同,因此采用该方法可以提高水下机器人采集数据的效率。

    Abstract:

    With the development of marine resource exploration and marine pollutant monitoring, monitoring and collection of hydrologic data have become an important research direction.Among them, underwater wireless sensor networks play an important role in hydrological data acquisition. This paper studies the data collection of sensor nodes in the two-dimensional monitoring model network of underwater wireless sensors. The proposed method optimizes the path of sensor nodes by using self-organizing mapping (SOM).We combine the optimized path graphics and the K-means algorithm to find the path internal aggregation point.Then we find the data acquisition point within the sensor communication radius through the aggregation point and the sensor node. Finally, the optimal path of autonomaous underwater vehicle (AUV) to each data collection point is found through SOM. In the verification experiment, 52 sensor nodes are arranged within a range of 1 200 m×1 750 m under the water, and the path obtained by data collection points is optimized by 6.7% compared with the path planning of sensor nodes in the same acquisition sequence. Compared with the optimal solution of sensor node path, the path obtained by reorganizing the self-organizing path planning of data collection points is improved by 12.2%. The results of increasing the number of sensor nodes are similar, so the proposed method can improve the data acquisition efficiency of AUV.

    图1 传感器节点SOM路径规划图Fig.1 SOM path planning diagram of sensor node
    图2 K-means算法传感器节点类簇中心Fig.2 K-means algorithm sensor node class cluster center
    图3 K-means算法聚类中心在规划路径中Fig.3 K-means algorithm clustering center in the planning path
    图4 采集点路径规划图Fig.4 Path planning diagram of collection point
    图5 采集点和传感器节点路径规划图Fig.5 Path planning diagram of collection point and sensor node
    图6 采集点重新路径规划图Fig.6 Repath planning diagram of collection point
    图7 48个采集点和传感器节点路径规划图Fig.7 Path planning diagram of 48 collection points and sensor nodes
    图8 100个采集点和传感器节点路径规划图Fig.8 Path planning diagram of 100 collection points and sensor nodes
    图9 150个采集点和传感器节点路径规划图Fig.9 Path planning diagram of 150 collection points and sensor nodes
    表 2 不同节点的实验结果Table 2 Experimental results of different nodes
    表 1 路径长度对比结果Table 1 Comparison results of path length
    参考文献
    相似文献
    引证文献
引用本文

洪悦,郭承军.基于K-means和SOM的水下传感器数据采集方法[J].数据采集与处理,2021,36(2):280-288

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-06
  • 最后修改日期:2020-10-20
  • 录用日期:
  • 在线发布日期: 2021-03-25