基于Mask-RCNN迁移学习的红外图像电力设备检测
作者:
作者单位:

1.国网江苏省电力有限公司电力科学研究院,南京 211103;2.国网江苏省电力有限公司,南京 210000

作者简介:

通讯作者:

基金项目:


Electrical Equipment Detection in Infrared Images Based on Transfer Learning of Mask-RCNN
Author:
Affiliation:

1.Electric Power Research Institute of State Grid Jiangsu Power Co. Ltd., Nanjing 211103, China;2.State Grid Jiangsu Power Co. Ltd., Nanjing 210000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    红外图像诊断是电力系统故障诊断的重要方式,但目前仍依靠人工辅助框图来实施图像中目标的检测。为提升检测效率,本文借鉴并改进在目标分割任务中表现优异的Mask-RCNN方法,利用图像自动语义分割识别红外图像中的一个或多个电力设备,并提取设备轮廓。为了缓解标注样本相对不足的问题,研究Mask-RCNN的迁移学习机制,设计并实现了训练数据重要性采样、参数迁移映射等方法,使改进后的方法适应于红外图像电力设备检测任务。在实际采集数据集上的实验表明,改进后的算法能在仅有少量像素级标注样本的条件下,较好地提取出电力设备的轮廓,并进一步识别出设备类别。所提模型和算法为进一步的设备分区和故障区域检测提供了精确有效的预处理手段。

    Abstract:

    Infrared fault image recognition is an important method to diagnose electrical equipment, but the recognition relies on the manually created bounding boxes over objects. In this paper, in order to improve the detection efficiency, automatic semantic segmentation of infrared images is investigated to recognize one or more electrical equipment objects. The proposed method is based on Mask-RCNN which has demonstrated good performance on instance segmentation. Our main contribution is applying transfer learning to Mask-RCNN, where importance sampling and parameter mapping are conducted to alleviate the data-shortage problem on pixel-level annotating. Experimental results on real-world datasets have shown that the improved version of Mask-RCNN is able to extract the shapes of electrical equipment, even with limited data with pixel-level annotations. The proposed algorithm provides an efficient way to the subsequent steps of fault region detection and classification.

    表 2 分类效果对比图Table 2 Comparison on the classification performance
    图1 Mask-RCNN概念图Fig.1 The conceptual illustration of Mask-RCNN
    图2 边框标注和掩模标注的制作Fig.2 Creating labels of bounding box and mask
    图3 “底层共享”和“顶层参数映射”的迁移学习示意图Fig.3 Transfer learning based on “sharing of bottom layers” and “feature mapping of top layers”
    表 1 设备检测效果Table 1 Detection results of equipment objects
    参考文献
    相似文献
    引证文献
引用本文

刘子全,付慧,李玉杰,张国江,胡成博,张照辉.基于Mask-RCNN迁移学习的红外图像电力设备检测[J].数据采集与处理,2021,36(1):176-183

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-03-20
  • 最后修改日期:2020-08-12
  • 录用日期:
  • 在线发布日期: 2021-01-25