基于区域特征脉冲耦合神经网络的航空发动机涡轮叶片DR图像融合
作者:
作者单位:

1.中国航发上海商用航空发动机制造有限责任公司,上海 201100;2.南昌航空大学无损检测教育部重点实验室,南昌 330063

作者简介:

通讯作者:

基金项目:


DR Image Fusion of Aero-engine Turbine Blades Based on Regional Feature Pulse Coupled Neural Network
Author:
Affiliation:

1.AECC Commercial Aircraft Engine Co. Ltd., Shanghai 201100,China;2.Key Laboratory of Non-destructive Testing Technology, Nanchang Hangkong University,Nanchang 330063,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对大厚比的复杂结构件数字射线成像(Digital radiography, DR),单一透照能量不能完整体现全部信息的问题,提出一种基于区域特征的脉冲耦合神经网络(Pulse coupled neural network, PCNN)多幅图像融合算法。以航空发动机涡轮叶片为研究对象,首先在获取多幅递增管电压透照子图基础上,经非下采样轮廓波变换(Non-subsampled contourlet transform, NSCT)分解为一个低频子带和多个尺度下的高频子带;其次采用PCNN算法,用各子带的改进空间频率中方向特征最明显的分量调整连接强度;然后低频子带采用区域均方差、高频子带采用改进的拉普拉斯能量和作为外部激励,点火映射图的判决遵循取大原则;最后通过NSCT逆变换得到融合结果图。实验结果表明,以熵、标准差、平均梯度、清晰度和空间频率作为客观评价指标,与基于拉普拉斯金字塔变换等经典融合算法相比均有所提升。本文研究方法性能优越,丰富了融合图像的细节信息,可获得更高质量的DR融合图像。

    Abstract:

    Aiming at the problem that single transillumination energy cannot completely cover all the information for the digital radiography (DR) of complex structures with large thickness ratios, we propose a pulse coupled neural network (PCNN) image fusion algorithm based on regional characteristics and take aero-engine turbine blades as the research objects. First, the multiple incremental tube voltage transillumination sub-images are decomposed into low frequency sub-bands and high frequency sub-bands at multiple scales by the non-sub-sampled contourlet transform (NSCT). Second, the PCNN algorithm is deployed to adjust the connection strength of the directions that hold the most obvious characteristics in the improved spatial frequency of each sub-band. Third, to fulfill the external excitation, the low-frequency sub-bands are calculated by the regional mean square error, while the high-frequency sub-band by the sum-modified Laplacian. Thus the two results are processed through the fire mapping by following the maximum principle. Finally, the fusion images are obtained by the NSCT inverse transformation. The experimental results show that the proposed method can improve fusion results in terms of entropy, standard deviation, average gradient, clarity and spatial frequency, compared with classical fusion algorithms including the methods based on the Laplace pyramid transformation. Our method can extend image-fusion performance by enriching the detailed information of the images and obtaining higher quality.

    表 1 融合图像评价指标Table 1 Fusion image evaluation index
    表 2 2号叶片融合图像评价表Table 2 Evaluation table of No.2 blade fusion image
    图1 某型叶片不同能量下DR图像Fig.1 DR images of a certain type of blade under different energy
    图2 NSCT变换示意图Fig.2 Schematic diagram of NSCT transformation
    图3 PCNN单个神经元结构模型Fig.3 PCNN single neuron structure model
    图4 涡轮叶片DR图像Fig.4 DR images of turbine blade
    图5 叶片DR图像融合过程Fig.5 Fusion process of blade DR images
    图6 低频图像及对应的点火映射图Fig.6 Low frequency images and fire mapping images
    图7 第2层高频子图及点火映射图Fig.7 High frequency sub-graphs and fire mapping images in the second layer
    图8 不同方法的融合结果Fig.8 Fusion results of different methods
    图9 2号叶片融合结果Fig.9 Fusion result of No.2 blade
    参考文献
    相似文献
    引证文献
引用本文

宋艳艳,朱倩,朱建伟,穆晨光.基于区域特征脉冲耦合神经网络的航空发动机涡轮叶片DR图像融合[J].数据采集与处理,2021,36(1):164-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-11-29
  • 最后修改日期:2020-12-25
  • 录用日期:
  • 在线发布日期: 2021-01-25