基于改进的3D-CNN的高光谱遥感图像地物分类
作者:
作者单位:

1.北京师范大学珠海校区自然科学高等研究院,珠海 519087;2.北京师范大学智能工程与教育应用研究中心,珠海 519087;3.海南师范大学信息科学技术学院,海口 571158

作者简介:

通讯作者:

基金项目:

海南省基础与应用基础研究计划(自然科学领域)高层次人才计划(2019RC182)资助项目。


Hyperspectral Remote Sensing Land-Cover Classification Based on Improved 3D-CNN
Author:
Affiliation:

1.Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China;2.Research Center for Intelligent Engineering and Educational Application, Beijing Normal University, Zhuhai 519087, China;3.School of Information Science and Technology, Hainan Normal University, Haikou 571158, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高光谱遥感影像波段众多,包含丰富的辐射、空间和光谱信息,是多种信息的综合载体,应用广泛。但是传统的高光谱影像地物分类方法多着重于光谱维度的特征提取,却忽略了空间维度上的特征,进而影响了分类的准确性。三维卷积神经网络(Three-dimensional convolutional neural network, 3D-CNN)可以同时在3个维度上对数据进行卷积处理,故本文采用3D-CNN深度网络进行高光谱影像地物分类,并针对3D-CNN网络存在的问题,提出了一种基于改进的3D-CNN的高光谱遥感影像地物分类方法。本文方法对提取到的空间和光谱特征实现融合复用,尽可能发挥特征的价值。此外,本文引入浅层特征细节保存网络的思想,提出一种综合浅层特征细节保存的影像分类深度网络模型,进一步提高了高光谱影像地物分类的准确度。在Tensorflow框架下对2个常用的高光谱遥感影像数据集(Indian Pines和Pavia University)的实验结果表明,相比基础的3D-CNN网络,本文方法的分类精度提高了近2%,而且类别边界更准确。

    Abstract:

    Hyperspectral remote sensing image has dozens or even hundreds of bands. It is a comprehensive carrier of many kinds of information, including rich radiation, spatial and spectral information and is widely used in the field of terrain mapping. However, the traditional hyperspectral image classification methods mostly focus on the feature extraction of spectral dimension, but ignore the features of spatial dimension, which affects the accuracy of classification. The three-dimensional convolutional neural network (3D-CNN) can convolute data in three dimensions at the same time, so this paper uses 3D-CNN depth network to classify ground objects with hyperspectral images, and proposes an improved algorithm based on 3D-CNN for hyperspectral remote sensing land-cover classification. The method can reuse the extracted spatial and spectral features and give full play to the value of features. In addition, this paper introduces the idea of shallow feature preservation network, and proposes a depth network model of image classification integrating shallow feature preservation, which further improves the accuracy of hyperspectral remote sensing land-cover classification. Experimental results of two commonly used hyperspectral remote sensing image data sets (Indian Pines and Pavia University) under the framework of Tensorflow show that compared with the basic 3D-CNN network, the classification accuracy of the proposed method is improved by nearly 2%.

    表 2 客观指标比较Table 2 Objective index comparison
    图1 Intensive-3D-CNN网络结构Fig.1 Structure of intensive-3D-CNN
    图2 浅层特征提取网络结构Fig.2 Structure of shallow feature extraction
    图3 卷积特征融合网络结构Fig.3 Structure of convolution feature fusion
    图4 特征融合单元结构Fig.4 Structure of feature fusion unit
    图5 过渡单元结构Fig.5 Structure of transition unit
    图6 浅层特征细节保存网络Fig.6 Structure of shallow feature detail preservation
    图7 图像分类网络结构Fig.7 Structure of image classification
    图8 实验数据集样本Fig.8 Sample of experimental data set
    图9 Indian Pines数据集实验结果Fig.9 Experimental results of Indian Pines data set
    图10 Pavia University数据集实验结果Fig.10 Experimental results of Pavia University data set
    表 1 网络卷积层的具体参数Table 1 Specific parameters of network convolution layer
    参考文献
    相似文献
    引证文献
引用本文

谢幸雨,贺辉,邢海花.基于改进的3D-CNN的高光谱遥感图像地物分类[J].数据采集与处理,2021,36(1):156-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-10
  • 最后修改日期:2020-09-30
  • 录用日期:
  • 在线发布日期: 2021-01-25