面向智慧生物实验室的弱外观多目标轻量级跟踪网络
作者:
作者单位:

1.北京交通大学信息科学研究所,北京100044;2.贵阳市公安司法鉴定中心,贵阳550025;3.贵州大学机械工程学院,贵阳550025

作者简介:

通讯作者:

基金项目:

贵州省自然科学基金(黔科合基础[2019]1064)资助项目;安徽省科技重大专项(17030901047)资助项目;国家自然科学基金(62062021, 61872034)资助项目;北京市自然科学基金(4202055)资助项目。


Lightweight Tracking Network of Weak Appearance Multi-object for Intelligent Biology Laboratory
Author:
Affiliation:

1.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;2.Criminal Examination Center of Guiyang Security Bureau,Guiyang 550025, China;3.School of Mechanical Engineering, Guizhou University, Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于监控视频的弱外观多目标跟踪是建设智慧生物实验室的一个重要内容。但是,由于遮挡、目标外观差别细微等因素的影响,容易出现漏检、误检等问题,导致跟踪失败。此外,基于深度学习的相关算法需要大量的计算量,在嵌入式平台上难以达到实时性。因此,本文提出了一种新的轻量级多目标跟踪算法,以YOLOv3作为基础目标检测网络,提出基于归一化层权重评价的层剪枝算法压缩检测网络计算量,以提高该算法在嵌入式平台上的运算速率。同时,基于已有的跟踪结果,对当前帧检测结果进行校正,实现对漏检目标的补偿校正,用于提高检测的准确性。最后利用卷积神经网络来提取目标特征,融合目标特征及候选框与预测框间的交并补(Intersection-over-union, IoU),进行数据关联。实验结果表明,本文提出的轻量级多目标跟踪算法与已有的多目标跟踪算法相比取得了较好的跟踪结果,且在仅损失较少精度的情况下保持较高的网络压缩率,适于嵌入式平台前端实现。

    Abstract:

    Multi-object tracking with weak appearances based on the surveillance video is one important issue for intelligent biology laboratory. However, due to the occlusion and subtle differences among objects, missing detection or false detection is prone to cause tracking failure. In addition, computational cost of deep learning is too high to be realized on embedded platforms. Therefore, a new lightweight multi-objects tracking algorithm is proposed, which uses YOLOv3 as the basic object detection network. A batch normalization layer weight evaluation based layer compression pruning algorithm is proposed to reduce the computational cost of the detection network such that the detection speed can be significantly improved on the embedded platform. Besides, according to the previous tracking results, the missing detection results can be corrected for the current frame, which improves the accuracy of the detection results. Furthermore, the convolutional neural network is employed to extract the object features. Object features and intersection-over-union (IoU) between the candidate frame and the prediction frame are combined for data association. Experimental results show that the proposed lightweight multi-object tracking algorithm achieves a better result compared with others. Especially, the network achieves a high compression rate with only slightly reducing the detection accuracy, which ensures the proposed network can be easily implemented on the embedded platform.

    表 1 模型剪枝算法Table 1 Model pruning algorithm
    表 6 嵌入式平台的模型性能对比Table 6 Model performance comparison of embedded platform
    表 4 目标检测网络裁剪前后效果对比Table 4 Comparison of effect of target detection network before and after cutting
    表 7 检测结果校正前后算法性能对比Table 7 Comparison of algorithm performance before and after test results correction
    图1 系统框图Fig.1 System block diagram
    图2 模型权重直方图Fig.2 Model weight histogram
    图3 检测结果修正Fig.3 Correction of test results
    图4 数据关联流程Fig.4 Data association process
    图5 测试视频中的部分图像帧Fig.5 Some image frames in the test video
    表 3 检测结果更新算法Table 3 Detection result update algorithm
    表 5 多目标跟踪算法比较Table 5 Comparison of multi-target tracking algorithms
    表 2 通道剪枝与层剪枝前后效果对比Table 2 Comparison of effects before and after channel pruning and layer pruning
    参考文献
    相似文献
    引证文献
引用本文

宗佳平,吴妍,陈建强,张琳娜,张悦,岑翼刚.面向智慧生物实验室的弱外观多目标轻量级跟踪网络[J].数据采集与处理,2021,36(1):122-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-15
  • 最后修改日期:2020-09-30
  • 录用日期:
  • 在线发布日期: 2021-01-25