基于汇聚CNN和注意力增强网络的遮挡人脸检测方法
作者:
作者单位:

1.晋城职业技术学院信息工程系,晋城 048000;2.山西大学计算机与信息技术学院,太原 030006

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61873153)资助项目。


Occlusion Face Detection Based on Convergent CNN and Attention Enhancement Network
Author:
Affiliation:

1.Departmet of Information Engineering, Jincheng Institute of Technology, Jincheng 048000, China;2.School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法。首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值。然后,将多个增强特征图组合成附加增强网络与主网络汇聚设置,以加快对多尺度遮挡人脸的检测速度。最后,将有监督信息分散到各个尺寸的特征图上进行监督学习,为不同尺寸的特征图设置了基于锚框尺寸的损失函数。在WIDER FACE和MAFA数据集上的实验结果表明,该方法的检测精度高于当前主流人脸检测方法。

    Abstract:

    Aiming at the problem of low detection accuracy of occluded faces in real scenes, an occluded face detection method based on convergent convolutional neural network (CNN) and attention enhancement network was proposed. First, on the multi-layer original feature map of the main network, the response value of the visible part of the face in the original feature map is enhanced by supervised learning. Then, multiple enhanced feature maps are combined into an additional enhanced network and set in converge with the main network to accelerate the detection of multi-scale occlusion faces. Finally, supervised information is distributed to feature maps of various sizes for supervised learning, and loss functions based on anchor frame sizes are set for feature maps of different sizes. Experimental results on WIDER FACE and MAFA datasets show that the detection accuracy of the proposed method is higher than the current mainstream face detection methods.

    表 1 MAP对比结果Table 1 MAP comparison results
    表 2 本文算法与HPM,HR,SFD和PyramidBox等方法的平均精度对比结果Table 2 Comparison of the average precision of our algorithm with HPM, HR, SFD and PyramidBox %
    图1 基于SSD算法的人脸检测模型Fig.1 Face detection model based on SSD algorithm
    图2 基于汇聚CNN和注意力增强网络的遮挡人脸检测模型Fig.2 Occlusion face detection model based on convergent CNN and attention enhancement network
    图3 注意力增强网络Fig.3 Attention enhancement network
    图4 精度和召回率曲线Fig.4 Accuracy and recall curves
    图5 本文方法与HPM,HR,SFD和PyramidBox方法在MAFA测试集的部分对比结果Fig.5 Partial comparison of the proposed method with HPM, HR, SFD and PyramidBox in the MAFA test set
    参考文献
    相似文献
    引证文献
引用本文

项丽萍,杨红菊.基于汇聚CNN和注意力增强网络的遮挡人脸检测方法[J].数据采集与处理,2021,36(1):95-102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-06-28
  • 最后修改日期:2020-12-25
  • 录用日期:
  • 在线发布日期: 2021-01-25