一种基于张量分解的医学数据缺失模态的补全算法
作者:
作者单位:

山东大学信息科学与工程学院,青岛 266237

作者简介:

通讯作者:

基金项目:

山东省重点研发计划(2017CXGC1504)资助项目。


A Complete Algorithm for Missing Modalities of Medical Data Based on Tensor Decomposition
Author:
Affiliation:

School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多模态磁共振影像数据采集过程中会出现不同程度的模态数据缺失,现有的补全方法大多只针对随机缺失,无法较好地恢复条状及块状缺失。针对此问题,本文提出了一种基于多向延迟嵌入的平滑张量补全算法分类框架。首先,对缺失数据进行多向延迟嵌入操作,得到折叠后的张量;然后通过平滑张量CP分解,得到补全的张量;最后利用多向延迟嵌入的逆向操作,得到补全的数据。该算法在BraTS脑胶质瘤影像数据集上进行了高低级别肿瘤分类实验,并与7种基线模型进行了比较。实验结果表明,本文提出方法的平均分类准确率可达91.31%,与传统补齐算法相比具有较好的准确性。

    Abstract:

    In the process of multi-modality magnetic resonance image (MRI) data acquisition, there will be different degrees of modality data missing. However, most of the existing completion methods only aim at random missing, which cannot recover strip and block missing. Therefore, this paper proposes a classification framework of smooth tensor completion algorithm based on multi-directional delay embedding. Firstly, the folded tensor is obtained by multi-directional delay embedding of missing data. Then, the completed tensor is obtained by smoothing tensor CP decomposition. Finally, the reverse operation of multi-directional delay embedding is used to obtain the completed data. The algorithm is used to classify high-level and low-level tumors on the BraTS glioma image data set and compared with seven baseline models. The average classification accuracy of the proposed method achieves 91.31%, and experimental results show that the method has better accuracy compared with the traditional complement algorithm.

    表 1 实验结果Table 1 Experimental results
    图2 BraTS2017数据集Fig.2 BraTS2017 dataset
    图3 特征矩阵示意图Fig.3 Schematic diagram of characteristic matrix
    图4 实验流程图Fig.4 Experimental flow chart
    图1 基于多向延迟嵌入的平滑CP分解算法过程示意图Fig.1 Process diagram of smooth CP decomposition algorithm based on multi-direction delay embedding
    参考文献
    相似文献
    引证文献
引用本文

刘琚,杜若画,吴强,何泽鲲,于璐跃.一种基于张量分解的医学数据缺失模态的补全算法[J].数据采集与处理,2021,36(1):45-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-11-29
  • 最后修改日期:2021-01-08
  • 录用日期:
  • 在线发布日期: 2021-01-25