基于深度特征学习的免校准室内定位方法
作者:
作者单位:

云南大学信息学院,昆明, 650500

作者简介:

通讯作者:

基金项目:

云南省教育厅科学研究基金(2019J0007)资助项目。


Calibration-Free Indoor Positioning Method Based on Depth Feature Learning
Author:
Affiliation:

School of Information Science and Engineering, Yunnan University, Kunming, 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对基于WiFi位置指纹的室内定位中设备异构带来的接收信号强度(Received signal strength,RSS)差异和定位精度偏移的问题,提出一种基于深度特征挖掘的免校准室内定位方法。离线阶段,结合最强接入点(Access point, AP)分类和普氏分析(Procrustes analysis)对原始指纹库处理,获取标准化子指纹库,采用堆叠降噪自编码器(Stacked denoising autoencoder, SDAE)学习标准化子指纹库获取深度特征指纹,构建深度特征子指纹库。在线阶段,利用与离线阶段相同的指纹处理方法,挖掘待定位点RSS数据的深度特征,采用加权最近邻算法(Weighted k-nearest neighbor, WKNN)与深度特征子指纹库匹配,获得估计的位置。在典型实验楼场景使用4种异构类型的手机进行实验,本文方法对比传统的标准化指纹的两种免校准方法,定位精度分别有5.9%和12.5%的提升,实验结果表明,本文算法提高了定位的准确性和鲁棒性。

    Abstract:

    A calibration-free indoor positioning method based on depth feature mining is proposed to solve the problem of RSS difference and positioning accuracy offset caused by heterogeneous devices in indoor positioning based on WiFi location fingerprint. In the offline stage, the original fingerprint database is processed by the combination of the strongest access point (AP) classification and procrustes analysis, and the standardized sub-fingerprint database is acquired. Stacked denoising autoencoder (SDAE) is used to learn the standardized sub-fingerprint database to obtain the depth feature fingerprint and construct the depth feature sub-fingerprint database. In the online stage, the same fingerprint processing method as the offline stage is used to mine the depth features of RSS data, and the WKNN method is used to match the depth feature sub-fingerprint database to obtain the estimated position. Four different types of mobile phones are used in typical experimental building scenarios. Compared with the traditional standard fingerprint calibration methods, the positioning accuracy of the proposed method is improved by 5.9% and 12.5%, respectively. Experimental results show that the proposed algorithm improves the positioning accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

常俊,杨锦朋,于怡然,余江.基于深度特征学习的免校准室内定位方法[J].数据采集与处理,2020,35(6):1106-1115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-06-12
  • 最后修改日期:2020-04-21
  • 录用日期:
  • 在线发布日期: 2020-11-25