基于联合分簇和LASSO的室内指纹定位算法
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海,200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金(51705324)资助项目。


Fingerprinting Indoor Localization Using Hybrid Clustering
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高定位效率和定位精度,提出了一种基于联合分簇(Hybrid clustering, HC)和LASSO的室内定位算法。该定位算法首先利用簇匹配实现目标粗定位,再在簇内采用LASSO算法进行二次精确定位。通过基于接收信号强度(Received signal strength, RSS)信号特性的K中心聚类方法结合基于物理位置的联合分簇,来降低粗定位阶段的簇匹配错误以避免粗大误差。采用位置指纹RSS信号的覆盖向量的相似度作为分簇和簇匹配的准则来降低运算量。簇内定位阶段采用LASSO算法达到特征稀疏化,有利于目标节点存储空间和能耗的优化。在室内典型办公环境下的定位实验表明,本定位技术在降低在线匹配计算量的同时能保持良好的定位效果,在参考位置点间隔1.8 m时,平均定位误差为1.73 m。

    Abstract:

    To improve the prediction speed and accuracy in indoor localization, a novel algorithm based on hybrid clustering and LASSO is proposed. Coarse localizer is taken by clustering matching and LASSO theory is used for fine localization. Besides the traditional received signal strength (RSS) based clustering, a coordinate-based clustering method is also used aiming at reducing the error caused by wrong cluster match. The similarity of the RSS coverage vectors is used as the criterion of clustering and cluster matching to reduce the computational complexity. The algorithm of LASSO is applied to recover RSS signal from noisy measurements with reduced demand for power and memory. Experimental results indicate that the proposed algorithm leads to an improvement on the fine positioning accuracy and online complexity. An average positioning error of 1.73 m is achieved with grid spacing of 1.8 m.

    参考文献
    相似文献
    引证文献
引用本文

乐燕芬,金施嘉珞,朱一鸣,施伟斌.基于联合分簇和LASSO的室内指纹定位算法[J].数据采集与处理,2020,35(6):1097-1105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-11-29
  • 最后修改日期:2020-04-10
  • 录用日期:
  • 在线发布日期: 2020-11-25