基于STFT-SST和深度卷积网络的多相码雷达信号识别
作者:
作者单位:

陆军工程大学通信工程学院,南京,210007

作者简介:

通讯作者:

基金项目:


Polyphase Codes Radar Signal Recognition Based on STFT-SST and Deep Convolutional Network
Author:
Affiliation:

College of Communications Engineering, Army Engineering University of PLA, Nanjing, 210007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多相码雷达信号特征相似,类间差距小,在低信噪比(Signal-to-noise ratio, SNR)下极易混淆。Choi-Williams等时频分布由于受时频分辨率的约束,难以刻画多相码信号的细节特征。为此,本文提出了一种基于同步挤压短时傅里叶变换(Short-time Fourier transform-based synchrosqueezing transform, STFT-SST)和深度卷积网络的自动分类识别算法。在特征选取上,采用STFT-SST对多相码雷达信号进行时频分析,并提出一种频谱增强算法,用于提升低SNR下的时频特征表示,以获得高分辨率的时频特征图像;在分类网络上,设计了一个9层深度卷积网络,并引入Inception 模块,提升网络对细节特征的捕获能力。仿真结果表明,当SNR为-8 dB时,该系统对5种特定多相码的平均识别率达91.8%,在低SNR下具有更好的识别性能。

    Abstract:

    The radar signals of polyphase codes are similar, which is easy to be confused under low signal-to-noise ratio (SNR). The classic Choi-Williams and other time-frequency distribution methods constrained by the time-frequency resolution are difficult to characterize the details of polyphase codes. Here, we propose an automatic recognition method based on the short-time Fourier transform-based synchrosqueezing transform (STFT-SST) and deep convolutional network. On the feature selection, the STFT-SST is used to radar signals for time-frequency analysis, and a spectrum enhancement algorithm is proposed to enhance the time-frequency features under low signal-to-noise ratio, then the high-resolution feature images are obtained. On the classification network, a nine-layer deep convolution network is designed, and the inception module is introduced to capture the signal’s detailed features. The simulation results show that when the SNR is -8 dB, the average recognition rate for five polyphase codes reaches 91.8%. The recognition performance of the proposed method is better at the low SNR.

    参考文献
    相似文献
    引证文献
引用本文

倪雪,王华力,徐志军,荣传振.基于STFT-SST和深度卷积网络的多相码雷达信号识别[J].数据采集与处理,2020,35(6):1090-1096

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-06-12
  • 最后修改日期:2020-10-19
  • 录用日期:
  • 在线发布日期: 2020-11-25