一种并行主偏度分析算法及其在盲源分离上的应用
作者:
作者单位:

1.中国科学院声学研究所声场声信息国家重点实验室,北京,100190;2.中国科学院大学电子电气与通信工程学院,北京,100049

作者简介:

通讯作者:

基金项目:

国家自然科学基金(11434012,11874061)资助项目;中国科学院联合基金(6141A010501)资助项目。


A Parallel Principal Skewness Analysis Algorithm and Its Application to Blind Source Separation
Author:
Affiliation:

1.State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences, Beijing, 100190, China;2.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    盲源分离(Blind source separation, BSS)是一种从混合信号中提取和恢复源信号的信号处理方法。在众多BSS算法中,主偏度分析(Principal skewness analysis, PSA)算法是近年来出现的一种以三阶统计量为目标函数的BSS算法,其运算速度快于常规的BSS算法,但因其采用了串行的计算方式,在使用中存在误差累积问题。针对这一问题,本文在PSA算法基础上进行改进,提出了一种并行PSA算法。该算法以并行计算代替串行计算,可以同时估计出各个独立成分对应的方向,避免了误差累积问题。数值仿真实验表明,与PSA算法相比,并行PSA算法既保持了计算速度,同时提高了对源信号的估计准确性。

    Abstract:

    Blind source separation (BSS) algorithm is utilized in extracting and recovering source signals from mixed signals. Among many different BSS algorithms, the principal skewness analysis (PSA) is a BSS algorithm taking third-order statistics as the objective function. One of its advantages is that its calculation speed is faster than the conventional BSS algorithms. However, because of the serial calculation method, error accumulation exists in the calculation process. In order to solve this problem, this paper proposes an algorithm called parallel PSA. In this algorithm, parallel calculation is used instead of serial calculation, and the corresponding directions of each independent component can be estimated simutaneously, so the problem of error accumulation is avoided. Simulation results prove that, compared with the PSA algorithm, the parallel PSA algorithm not only maintains the fast calculation speed, but also improves the estimation accuracy of each source signal.

    参考文献
    相似文献
    引证文献
引用本文

李康宁,郭永刚,王肃静,黄石羽.一种并行主偏度分析算法及其在盲源分离上的应用[J].数据采集与处理,2020,35(5):910-919

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-02-24
  • 最后修改日期:2020-05-05
  • 录用日期:
  • 在线发布日期: 2020-09-25