基于集成一致性的多源跨领域情感分类模型
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院, 昆明, 650500;2.昆明理工大学云南省人工智能重点实验室, 昆明, 650500

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2018YFC0830105)资助项目;国家自然科学基金(61966020 61741112)资助项目;国家博士后面上科学基金(2016M592894XB)资助项目;云南省重大科技项目(2018ZF017) 资助项目。


Multiple-Source Cross Domain Sentiment Classification Model Based on Ensemble Consistency
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China;2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有的跨领域情感分类方法大多只利用了单个源域到目标域的迁移特征,没有充分考虑目标域实例与不同源域之间的联系。针对此问题,本文提出一种无监督的多源跨领域情感分类模型。首先利用单个源域到目标域的迁移特征训练基分类器,并对不同的基分类器加权;然后将不同基分类器对目标域实例预测的集成一致性作为目标函数,优化该目标函数,得到不同基分类器的权重;最后利用加权后的基分类器得到目标域的情感分类结果。该模型在亚马逊产品评论数据集上和Skytrax数据集上进行了实验,并与6种基线模型进行了比较。实验结果表明,本文方法相比基线模型,在8个不同目标域的实验中分类性能均有明显提升。

    Abstract:

    Most of the existing cross-domain sentiment classification methods only take advantage of the migration feature from a single source domain to a target domain, without fully considering connections between target domain instances and different source domains. To solve this problem, this paper proposes an unsupervised multiple-source cross-domain sentiment classification model. First, the base classifier is trained by using the migration feature of a single source domain to a target domain, and different base classifiers are weighted. Then, the ensemble consistency of different base classifiers on the target domain instance prediction is taken as the objective function, and the objective function is optimized to obtain the weights of different base classifiers. Finally, the weighted base classifier is used to obtain the sentiment classification results of the target domain. The model is tested on Amazon's product review data set and Skytrax data set, and is compared with six baseline models. Experimental results show that compared with the baseline model, the classification performance of the proposed method is significantly improved in eight different target domains.

    参考文献
    相似文献
    引证文献
引用本文

梁俊葛,线岩团,相艳,王红斌,陆婷,许莹.基于集成一致性的多源跨领域情感分类模型[J].数据采集与处理,2020,35(5):858-866

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-08-30
  • 最后修改日期:2019-11-18
  • 录用日期:
  • 在线发布日期: 2020-09-25