特征与分类算法在基于肌音信号的头部运动分类中的对比研究
作者:
作者单位:

华东理工大学机械与动力工程学院,上海,200237

作者简介:

通讯作者:

基金项目:

国家自然科学基金(51405236)资助项目;上海市浦江人才计划(16PJ1402300)资助项目。


Comparative Study of Features and Classification Algorithms in Mechanomyography Based Head Movement Classification
Author:
Affiliation:

School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提取颈部肌肉的肌音(Mechanomyography, MMG)信号时域、时-频域和非线性动力学的15个常见特征,按照其性质分为5个特征集,并选择其中一部分构建高维特征矢量后进行主成分分析(Principal component analysis, PCA)降维处理,应用于头部动作的模式识别研究中。分别采用支持向量机(Support vector machine, SVM)、K近邻(K-nearest neighbor,KNN)和线性判别分析(Linear discriminant analysis, LDA)3种分类器,对6种头部动作(低头、抬头、左摆头、右摆头、左转头和右转头)的MMG信号进行分类。实验结果表明,选用时域、时-频域和非线性动力学特征组合的方式,以及使用SVM作为分类器,可使各类动作的分类精度均达到80%以上,从而获得相对较高的准确率。

    Abstract:

    Fifteen typical features in time domain, time-frequency domain and non-linear dynamic are extracted from the mechanomyogarphy (MMG) signals in neck muscles. They are divided into five feature sets according to their nature, and part of them are constructed to high-dimension feature vectors before reducing the dimension by principal component analysis (PCA), which are applied in the pattern research for head movements. The MMG of six head movements (forward, backward, swing to left, swing to right, turn to light, turn to right) are classified by adopting three sorts of classifiers, which are support vector machine (SVM), K nearest neighbor (KNN) and linear discriminant analysis (LDA). Experimental results show that selecting the method of combining features in time domain, time-frequency and non-linear dynamic, and adopting SVM as the classifier can improve the classification accuracy up to higher than 80% in each movement, thus acquiring relatively higher rate.

    参考文献
    相似文献
    引证文献
引用本文

章悦,夏春明,谢佳智,刘爽.特征与分类算法在基于肌音信号的头部运动分类中的对比研究[J].数据采集与处理,2020,35(4):711-719

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-11-22
  • 最后修改日期:2019-12-22
  • 录用日期:
  • 在线发布日期: 2020-07-25