基于心动周期和经验模式分解的心电信号去噪处理
作者:
作者单位:

1.长治医学院生物医学工程系,长治,046000;2.长治医学院基础医学部,长治,046000;3.中北大学信息探测与处理山西省重点实验室,太原,030051;4.中北大学信息与通信工程学院,太原,030051

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61842103)资助项目;山西省高等学校科技创新计划(2020L0389)资助项目。


Electrocardiogram Signal Denoising Based on Cardiac Cycle and Empirical Mode Decomposition
Author:
Affiliation:

1.Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046000,China;2.Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, China;3.Key Laboratory of Information Detection and Processing, North University of China, Taiyuan, 030051, China;4.School of Information and Communication Engineering, North University of China, Taiyuan, 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对现有心电信号(Electrocardiogram,ECG)去噪方法难以精准剥离与之频带重叠的肌电干扰并无损提取到“干净”ECG的问题,提出了利用心动周期和经验模式分解对含噪ECG进行去噪处理。本文方法首先对含噪ECG进行经验模式分解,然后利用心动周期判断固有模态函数分量属于噪声还是有用信号,最后将有用信号的固有模态函数分量重构ECG。为验证本文去噪方法,首先采用ECG动力学仿真模型评估本文方法在不同参数噪声下的去噪效果;其次选取MIT-BIH数据库中的基线漂移信号bw,肌电干扰信号ma和105号、107号、123号ECG分别构建3组真实含噪ECG进行实验。评估与实验结果均表明本文方法可以简单、有效地同时去除ECG中的肌电干扰和基线漂移,去噪效果优于普通经验法。

    Abstract:

    In order to solve the problem that the existing electrocardiogram(ECG)denoising methods are difficult to accurately separate the overlapped myoelectricity interference and extract “clean” ECG, this paper proposes a method of using cardiac cycle and empirical mode decomposition to denoise the noisy ECG signal. Firstly, empirical mode decomposition is used to decompose the noisy ECG signal, and then the intrinsic modal function components of the signal are determined to be noise or useful signal by cardiac cycle. Finally, the intrinsic modal function components of the useful signal are reconstructed to be ECG signal. For validating the proposed method, the dynamic simulation model of ECG signal is used to evaluate the denoising effect of the method under different parameters of noise; and three groups of real noisy ECG are constructed by selecting baseline drift signal bw, myoelectricity interference signal ma and ECG105, 107 and 123 in MIT-BIH database, respectively. Both the evaluation and experimental results show that the method can remove the myoelectricity interference and baseline drift in ECG at the same time, and the denoising effect is better than the usual empirical method.

    参考文献
    相似文献
    引证文献
引用本文

卢莉蓉,王鉴,牛晓东,燕慧超.基于心动周期和经验模式分解的心电信号去噪处理[J].数据采集与处理,2020,35(4):702-710

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-02-13
  • 最后修改日期:2020-03-23
  • 录用日期:
  • 在线发布日期: 2020-07-25