基于卷积神经网络的物理帧切割方法
作者:
作者单位:

国防科技大学电子对抗学院,合肥, 230037

作者简介:

通讯作者:

基金项目:


Physical Frame Segmentation Method Based on Convolutional Neural Network
Author:
Affiliation:

Electronic Countermeasure Institute,National University of Defense Technology, Hefei, 230037, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对帧切割方法中门限选择难度大及方法普适性不高的问题,本文首次提出基于卷积神经网络的物理帧切割方法。该方法首先通过分析矩阵的构造、数据压缩和矩阵扩展3个步骤将数字序列转化为图像;然后用已有的样本训练卷积神经网络,用训练好的卷积神经网络识别未知协议的帧长;最后在帧长识别的基础上,通过相关滤波方法完成帧起始位置的识别,实现对物理帧的切割。仿真实验验证了算法的有效性,表明本文方法具有一定的工程应用价值。

    Abstract:

    A physical frame segmentation method based on convolutional neural network is innovatively proposed in the present study to address the difficulty of threshold selection in the frame segmentation method and the problem of poor universality of the method. Firstly, the digital sequence is transformed into an image by following three steps including matrix construction, data compression and matrix expansion. Then, the convolutional neural network is trained with the existing samples and the trained convolutional neural network is employed to identify the frame length of the unknown protocol. Finally, on the basis of frame length recognition, the initial position of the frame is identified using correlation filtering method. Therefore, each frame can be extracted from the bit stream. The proposed method, which has higher accurate recognition than existing algorithms suggested by simulation results, has significant potential in engineering application.

    参考文献
    相似文献
    引证文献
引用本文

邵堃,雷迎科.基于卷积神经网络的物理帧切割方法[J].数据采集与处理,2020,35(4):653-663

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-01-14
  • 最后修改日期:2019-09-05
  • 录用日期:
  • 在线发布日期: 2020-07-25