基于图嵌入模型的协同过滤推荐算法
作者:
作者单位:

1.南京邮电大学通达学院, 扬州, 225127;2.计算机软件新技术国家重点实验室(南京大学), 南京, 210023

作者简介:

倪文烨(1998-),女,本科生,研究方向:数据挖掘、推荐算法,E-mail:1256984540@ qq.com。

通讯作者:

基金项目:

江苏省青蓝工程资助项目;江苏省高校自然科学研究(17KJB520028)资助项目;南京邮电大学校级科研基金(NY217114)资助项目;南京邮电大学通达学院科研基金(XK203XZ18002)资助项目。


Graph Embedding Model Based Collaborative Filtering Algorithm
Author:
Affiliation:

1.Tongda College,Nanjing University of Posts and Telecommunications,Yangzhou, 225127, China;2.State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing, 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统协同过滤算法存在严重的数据稀疏和冷启动问题。利用社交网络中的丰富信息为解决传统协同过滤算法的数据稀疏和冷启动带来了契机。然而,传统基于社交网络的协同过滤算法仅利用粗粒度、稀疏的用户信任关系来改进传统协同过滤算法,即用0或1表示用户之间信任程度。另外,传统基于社交网络推荐算法仅仅集成用户之间显式信任关系,而忽略用户之间隐式的信任关系。本文提出一种基于图嵌入模型的协同过滤推荐算法,即利用图嵌入模型技术学习社交网络中用户的低维特征表示,并根据用户的低维特征表示推导用户之间细粒度的信任关系。最后,根据信任用户和相似用户对目标物品的评分权重预测用户对目标物品的评分。在真实数据集上的实验结果表明,基于图嵌入模型的协同过滤算法的性能优于传统的协同过滤算法。

    Abstract:

    Traditional collaborative filtering algorithms suffer from data sparsity and cold start problems. Taking advantage of rich information in social networks brings an opportunity to alleviate the problems of data sparsity and cold start. However, the traditional social network-based collaborative filtering algorithm only use the coarse-grained and sparse trust relationships to improve recommendation quality, i.e. they only utilize 0 or 1 to denote the trust relationships between users. In addition, the traditional social network based recommendation algorithms only integrate explicit trust relationships, and ignore implicit trust relationships. In this paper, we propose a graph embedding model based collaborative filtering algorithm. Specifically, we adopt the graph embedding technique to learn the low-dimensional embedded representations of users in social networks, and infer the fine-grained trust relationship between users based on the low-dimensional embedded representations. Finally, the user’s rating of the target item is predicted based on the scoring weights of the target item by the trusted user and the similar one. Experimental results on the actual data sets prove that the performance of the collaborative filtering algorithm based on the graph embedding model is better than that of the traditional collaborative filtering algorithms.

    参考文献
    相似文献
    引证文献
引用本文

高海燕,毛林,窦凯奇,倪文晔,赵卫滨,余永红.基于图嵌入模型的协同过滤推荐算法[J].数据采集与处理,2020,35(3):483-493

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-10-25
  • 最后修改日期:2019-11-26
  • 录用日期:
  • 在线发布日期: 2020-05-25