边缘标记弱化的多标记特征选择算法
作者:
作者单位:

1.安庆师范大学计算机与信息院, 安庆, 246133;2.安徽省高校智能感知与计算重点实验室, 安庆, 246133

作者简介:

通讯作者:

基金项目:

安徽省高校重点自然科学基金(KJ2017A352)资助项目;安徽省高校重点实验室基金(ACAIM160102)资助项目;安徽省自然科学基金(1908085MF194)资助项目。


Multi-label Feature Selection Algorithm with Weakening Marginal Labels
Author:
Affiliation:

1.School of Computer and Information, Anqing Normal University, Anqing, 246133, China;2.The University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing, 246133, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在多标记学习中,特征选择是处理数据高维问题和提升分类性能的一种有效手段,然而现有特征选择算法大多是基于标记分布大致平衡这一假设,鲜有考虑标记分布不平衡的问题。针对这一问题,本文提出了一种边缘标记弱化的多标记特征选择算法(Multi-label feature selection algorithm with weakening marginal labels,WML),计算不同标记下正负标记的频数比率作为该标记的权值,然后通过赋权方式弱化边缘标记,将标记空间信息融入到特征选择的过程中,得到一组更为高效的特征序列,提升标记对样本描述的精确性。在多个数据集上的实验结果表明,本文算法具有一定优势,通过稳定性分析和统计假设检验进一步证明本文算法的有效性和合理性。

    Abstract:

    In multi-label learning, feature selection is an effective method to deal with high-dimensional data problems and improve classification performance. However, most of the existing feature selection algorithms are based on the assumption that the label distribution is roughly balanced, and rarely consider the problem of unbalanced label distribution. To solve this problem, this paper proposes a multi-label feature selection algorithm with weakening marginal labels (WML). The algorithm calculates the frequency ratio of positive and negative labels under different labels as the weight of the label, weakens the marginal label by weighting method, and integrates the label space information into the process of feature selection to obtain a more efficient feature sequence, thus improving the accuracy of label description of samples. The experimental results on several datasets show that the proposed algorithm has certain advantages. The effectiveness and rationality of the proposed algorithm are further proved by stability analysis and statistical hypothesis test.

    参考文献
    相似文献
    引证文献
引用本文

王一宾,吴陈,程玉胜,江健生.边缘标记弱化的多标记特征选择算法[J].数据采集与处理,2020,35(3):420-430

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-10-30
  • 最后修改日期:2019-12-10
  • 录用日期:
  • 在线发布日期: 2020-05-25