一种基于深度学习的半监督分层模型
作者:
作者单位:

1.中南民族大学计算机科学学院,武汉,430074;2.湖北省制造企业智能管理工程技术研究中心,武汉,430074

作者简介:

通讯作者:

基金项目:

国家社会科学基金重大(17ZDA166)资助项目;湖北省技术创新专项重大(2019ABA101)资助项目;中央高校基本科研业务费专项资金 (CZY18015) 资助项目。


A Semi-supervised Layer-Wise Model Based on Deep Learning
Author:
Affiliation:

1.College of Computer Science, South-Central University for Nationalities,Wuhan,430074,China;2.Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises ,Wuhan,430074,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    依照图像识别出的对象标签,通过层次结构来分类图像集是图像自动化分类的重要研究问题之一。现有的方法实现了对象标签已知情况下的层次结构构建,仅存在少量方法考虑部分对象标签未知的影响。本文对经典方法进行了扩展和优化,实现了存在部分对象标签未知情况下的层次结构构建和更新。利用卷积神经网络(Convolutional neural network, CNN)对图像编码,提出半监督学习方法,根据传统算法构建类标签已知图像集的层次结构,通过周期性相似性比较,对层次结构中标签未知图像进行聚类,实现对半监督分层模型(Semi-supervised layer-wise model,SLM)的构建。本文采用了真实公开的数据集,实验结果表明,该方法能够有效地实现层次结构的构建和更新,并且能够在较小规模的数据集上取得好的预测分类效果。

    Abstract:

    Using hierarchical structure to classify image set which has the object labels identified by images is one of the important research issues in image automation classification. The previous researches have already implemented the hierarchical structure construction for the labeled images, and now there are only a few methods to consider the influence of the part of the unlabeled images. In this paper, the classical method is extended and optimized, and the hierarchical structure construction and update are realized when some object labels are unknown. The convolutional neural network (CNN) is used to encode these images, and the semi-supervised learning method is proposed. The hierarchical structure of the image set which has known the object labels is constructed according to the traditional algorithm. Through the periodic similarity comparison, the unlabeled images in the hierarchy are clustered. The construction of the semi-supervised layer-wise model (SLM) is realized. This paper adopts the real public data sets. The experimental results show that the SLM can effectively realize the construction and update of the hierarchical structure, and can achieve good prediction classification effect on the smaller scale data sets.

    参考文献
    相似文献
    引证文献
引用本文

王江晴,张蕾,孙翀,帖军,周玮瑜,孟凯.一种基于深度学习的半监督分层模型[J].数据采集与处理,2020,35(3):392-399

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-10-22
  • 最后修改日期:2020-01-10
  • 录用日期:
  • 在线发布日期: 2020-05-25