布谷鸟算法在无线传感器网络中的定位研究
作者:
作者单位:

陕西理工大学数学与计算机科学学院,汉中,723000

作者简介:

通讯作者:

基金项目:

陕西省教育厅(17JK0146)资助项目;陕西理工大学科研基金(SLG1915)资助项目。


Localization of Cuckoo Algorithm in Wireless Sensor Network
Author:
Affiliation:

School of Mathematics and Computer Science,Shaanxi University of Technology, Hanzhong,723000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    无线传感器网络(Wireless sensor network,WSN)中的核心技术之一就是节点定位。不同的定位方法对定位结果有不同的影响。针对最小二乘法在求解未知节点位置过程中定位精度的不足,提出一种WSN节点定位算法——基于改进的布谷鸟搜索算法(Cuckoo search ,CS)的定位算法。首先根据优化目标建立数学模型,然后设计了布谷鸟搜索算法中的适应值函数,并修改步长和拒绝概率参数,快速确定未知节点坐标位置。数字仿真实验表明:与基于距离向量跳数的定位方法(Distance vector hop,DV-HOP),基于自适应的布谷鸟搜索和距离向量跳数的定位算法(Self-adaption cuckoo search and distance vector hop,SACSDV-HOP)进行比较,本文算法可以有效提高节点定位精度,降低定位误差,具有较高的实用性。

    Abstract:

    Node localization is one of the core technologies in wireless sensor network(WSN). Different localization methods have different effects on localization results. In response to the deficiency in accuracy of localization during the process of searching for the unknown node localization with the least-square algorithm, a localization algorithm is proposed based on improved cuckoo search(CS) algorithm. The first step is to establish the mathematical model according to the optimization objective, and then we design the fitness function of cuckoo search algorithm. Finally, we modify the parameters of the step length and rejection probability and thus determine the coordinate position of the unknown nodes quickly. The simulation results show that the proposed algorithm is better than the distance vector hop(DV-HOP) and the self-adaption cuckoo search and distance vector hop(SACSDV-HOP) algorithms. The algorithm can effectively reduce the error of localization in WSN and improve the accuracy in locating nodes. Accordingly, it has high practicability in WSN node localization.

    参考文献
    相似文献
    引证文献
引用本文

李娜,贾伟.布谷鸟算法在无线传感器网络中的定位研究[J].数据采集与处理,2020,35(2):315-321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-01-13
  • 最后修改日期:2020-03-12
  • 录用日期:
  • 在线发布日期: 2020-03-25