一种集成多个机器学习模型的复合材料结构损伤识别方法
作者:
作者单位:

1.中国飞机强度研究所,西安,710065;2.北京大学信息科学技术学院,北京,100871

作者简介:

通讯作者:

基金项目:


Integrated Method of Multiple Machine-Learning Models for Damage Recognition of Composite Structures
Author:
Affiliation:

1.Aircraft Strength Research Institute of China, Xi’an, 710065, China;2.School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对基于导波的复合材料结构损伤监测手段在实际工程应用中遇到的问题,结合目前已开展的利用机器学习模型辅助结构损伤识别的经验,提出了一种基于最小边际系数的复合材料结构损伤识别方法。通过采用多个机器学习模型对监测数据进行预测,利用不同机器学习模型之间的差异性和在不同数据分布上的预测置信度,提高整体结构损伤识别的泛化能力。通过试验验证,该方法能明显提高基于导波的复合材料结构损伤识别精度。

    Abstract:

    In the topic of damage detection of composite structures based on lamb wave technology, damage index is commonly used for damage identification. However, its threshold is largely of expertise-dependence and poor performance at knowledge generalization. Therefore, a method based on the concept of least margin is proposed, which integrates even machine learning models and outputs the identification result by polling all models’ decision. The proposed method avoids the shortage that damage recognition relies on a single but incomprehensive model, and puts the confidence on a number of most qualified models instead. Significantly higher accuracy of damage identification for composite structures is manifested through test verification.

    参考文献
    相似文献
    引证文献
引用本文

杨宇,周雨熙,王莉.一种集成多个机器学习模型的复合材料结构损伤识别方法[J].数据采集与处理,2020,35(2):278-287

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-12-22
  • 最后修改日期:2020-01-14
  • 录用日期:
  • 在线发布日期: 2020-03-25