基于核岭回归方法的定位算法研究
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海, 200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金 51705324┫资助项目 国家自然科学基金(51705324)资助项目。


Research on Location Algorithm Based on Kernel Ridge Regression
Author:
Affiliation:

School of Optoelectronic Information and Computer Engineering,University of Shanghai for Science and Technology, Shanghai, 200093,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对无线传感器网络环境下的定位问题,提出了一种基于核岭回归(Kernel ridge regression,KRR)的定位算法。核岭回归算法是在岭回归算法的基础上加入了核函数,该算法在离线阶段采用核岭回归方法提取所有位置指纹数据间的非线性关系,训练出非线性回归定位模型;在线阶段采集目标点的接收信号强度指示(Received signal strength indicator,RSSI)值,利用非线性定位模型估计目标点的物理位置。仿真分析了影响算法性能的各个因素,并在室内典型办公环境下进行了定位实验。实验结果表明,该算法在不同因素的影响下,相比传统加权K近邻算法(Weight K-nearest neighbor,WKNN)算法能达到更好的定位精度,在位置网格间距1.8 m时,WKNN算法平均定位误差为2.53 m,而该算法误差为1.58 m。

    Abstract:

    A kernel ridge regression (KRR) based localization algorithm is proposed for localization in wireless sensor networks. KRR algorithm adds kernel function on the basis of ridge regression. In the off-line phase of the algorithm, the KRR method is used to extract the nonlinear relationship between fingerprint data of all positions, and the nonlinear regression positioning model is trained. The received signal strength indicator(RSSI) value of the target is collected in the online stage, and the target position is estimated using the positioning model. Simulation analyzes various factors which of impact the algorithm performance. The location experiment is achieved in indoor typical office environment. Experimental results show that under the influence of different factors, this algorithm can achieve better positioning accuracy than the traditional WKNN algorithm. When the position grid spacing is 1.8 m, the average positioning error of WKNN algorithm is 2.53 m, while the error of the proposed algorithm is 1.58 m.

    参考文献
    相似文献
    引证文献
引用本文

汤卓,乐燕芬,施伟斌.基于核岭回归方法的定位算法研究[J].数据采集与处理,2020,35(1):147-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-03-02
  • 最后修改日期:2019-05-17
  • 录用日期:
  • 在线发布日期: 2020-01-25