基于功率检测和选择性集成的无线MAC协议识别技术
作者:
作者单位:

1.国防科技大学电子对抗学院,合肥,230037;2.安徽省电子制约技术重点实验室,合肥,230037

作者简介:

通讯作者:

基金项目:


Wireless Medium Access Control Protocol Identification Based on Power Detection and Selective Ensemble
Author:
Affiliation:

1.Electronic Countermeasure Institute, National University of Defense Technology, Hefei, 230037, China;2.Key Laboratory of Electronic Restricting Technique of Anhui Province, Hefei, 230037, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过检测无线网络的功率变化识别介质访问控制(Medium access control, MAC)协议在认知无线电和认知电子战领域具有重要意义。为提高识别能力,本文在现有特征的基础上,提出碰撞概率估计特征和Fisher统计量特征。针对识别目标的网络配置与训练样本不同时识别效果较差的问题,提出利用基于Q学习的选择性集成方法,从训练的多个基分类器中选择一部分组成分类系统,提高算法的泛化能力。利用OPNET仿真软件采集4种MAC协议的功率变化数据进行验证。实验结果表明,所提特征能够提升对不同MAC协议的区分度,当目标网络与训练网络的配置不同时,选择性集成方法的识别效果优于单分类器和全部集成方法。

    Abstract:

    Wireless medium access control (MAC) protocol identification based on power detection plays an important role in cognitive radio and cognitive electronic warfare. To improve accuracy, features like collision proportion estimation and Fisher statistic are derived. Aiming at the problem of low accuracy when the target network is different from training samples, the selective ensemble method based on Q-learning is utilized. The identification system is constructed from a set of selected base classifiers to improve generation capacity. The proposed method is tested with samples of four MAC protocols by OPNET simulation. Experimental results show that the features proposed in this article increase discrimination ability of different MACs. Moreover, when the target network is different from training samples, the selective ensemble method has higher accuracy than the single classifier and the ensemble of all classifiers.

    参考文献
    相似文献
    引证文献
引用本文

杨俊安,黄科举.基于功率检测和选择性集成的无线MAC协议识别技术[J].数据采集与处理,2020,35(1):100-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-01-15
  • 最后修改日期:2018-04-27
  • 录用日期:
  • 在线发布日期: 2020-01-25