人脸表情识别综述
作者:
作者单位:

江西师范大学计算机信息工程学院,南昌,330022

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61462042 61966018 61962027 61866018┫资助项目 国家自然科学基金(61462042,61966018,61962027,61866018)资助项目。


Facial Expression Recognition: A Survey
Author:
Affiliation:

College of Computer Information and Engineering, Jiangxi Normal University, Nanchang, 330022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    人脸表情识别是人类情感识别的基础,是近年来模式识别与人工智能领域研究的热点问题。本文首先总结了人脸表情识别的发展过程,主要包括传统的表情特征提取、表情分类方法与基于深度学习的表情识别方法,并对各种算法的识别率与性能进行了分析与比较。然后介绍了表情识别常用的数据集及各数据集的优势与存在的问题,并针对这些问题归纳分析了生成对抗网络等用于数据增强的技术与方法。最后,总结了表情识别领域目前存在的问题并展望了未来可能的发展。

    Abstract:

    Facial expression recognition is the basis of human emotion recognition, which has been a hot topic in pattern recognition and artificial intelligence. This paper summarizes the development process of facial expression recognition framework, mainly including the traditional expression feature extraction, expression classification method and deep learning-based expression recognition method, and then analyzes and compares the recognition rate and performance of various algorithms. Moreover, this paper introduces the commonly used datasets of facial expression recognition and the advantages and problems of each data set. In view of these problems, the techniques and methods for data enhancement are analyzed, such as generative adversarial network (GAN). Finally, the existing problems in the field of facial expression recognition are summarized and the prospect of future development is put forward.

    参考文献
    相似文献
    引证文献
引用本文

叶继华,祝锦泰,江爱文,李汉曦,左家莉.人脸表情识别综述[J].数据采集与处理,2020,35(1):21-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-11-30
  • 最后修改日期:2020-01-03
  • 录用日期:
  • 在线发布日期: 2020-01-25