sEMG信号采集电路设计及其特征提取算法
作者:
作者单位:

西安科技大学通信与信息工程学院,西安, 710054

作者简介:

通讯作者:

基金项目:

陕西省科技计划工业科技攻关(2017GY-073)资助项目 ; 西安市碑林区应用技术研发 GX1811┫资助项目 ; 西安市科技计划 GXYD13.5┫资助项目 陕西省科技计划工业科技攻关(2017GY-073)资助项目;西安市碑林区应用技术研发(GX1811)资助项目;西安市科技计划(GXYD13.5)资助项目。


Single Channel sEMG Signal Acquisition Circuit Design and Its Feature Extraction Algorithm
Author:
Affiliation:

School of Communication and Information Engineering,Xi’an University of Science & Technology,Xi’an,710054,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    表面肌电(Surface electromyography,sEMG)信号直接、客观地反映了神经和肌肉的活动功能状态,已获得广泛应用。本文设计了一种sEMG信号采集电路并以单通道形式采集上肢5种动作的sEMG信号,经小波包变换提取6种特征(其中一种引自基于小波变换的特征提取方法)并分别结合PCA和KPCA进行处理;再分别用BP神经网络和SVM进行动作识别。此外,对比了小波变换的特征提取;讨论了KPCA与PCA在特征变换上的差异。所提取的基于小波包变换的6种特征有5种的识别率均超过95.7%,其中引入的高低频系数组合特征在BP神经网络下平均识别率超过99%。基于小波变换提取的5种特征经KPCA变换后也达到较高的识别率。实验结果表明,本文的sEMG信号采集方法及其特征提取方法均达到较好效果。

    Abstract:

    Surface electromyography(sEMG) signal directly and objectively reflects the functional status of nerve and muscle, which has been widely used. In this paper, a sEMG acquisition circuit is designed and used as single channel circuit to collect sEMG signals of five kinds of upper limb movements, then six kinds of features (one of which is quoted from the feature extraction method based on wavelet transform) are extracted by wavelet packet transform(WPT) combining with KPCA, and finally recognition is performed with BP neural network and SVM. Feature extraction based on wavelet transform is also performed for comparison and the difference between PCA and KPCA on feature transform is also studied. The results show that among the six kinds of features extracted by wavelet packet transform, five kinds of recognition rates exceed 95.7%, and the average recognition rate of the high-low frequency coefficients combination feature quoted is more than 99% with a BP neural network. Overall, the recognition rates are high. And the five kinds of features extracted by wavelet transform combining KPCA also achieve a decent recognition rate. The results prove that the sEMG signals collected and the feature extraction method used in this paper are both effective.

    参考文献
    相似文献
    引证文献
引用本文

赵谦,郭方锐,杨官玉. sEMG信号采集电路设计及其特征提取算法[J].数据采集与处理,2019,34(6):1039-1049

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-09-03
  • 最后修改日期:2018-12-17
  • 录用日期:
  • 在线发布日期: 2019-12-13