智能网联车环境下基于路段评分的数据转发模型
作者:
作者单位:

1.江苏大学信息化中心,镇江, 212013;2.江苏大学计算机科学与通信工程学院,镇江, 212013;3.江苏省工业安全重点实验室,镇江, 212013

作者简介:

通讯作者:

基金项目:

国家重点研发计划重点专项 2017YFB1400700┫资助项目 国家重点研发计划重点专项(2017YFB1400700)资助项目。


Road Section Scoring-Based Data Forwarding Model for Intelligent Connected Vehicles
Author:
Affiliation:

1.Information Center, Jiangsu University, Zhenjiang, 212013, China;2.School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, 212013, China;3.Jiangsu Key Laboratory of Industrial Safety, Zhenjiang, 212013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    智能网联车之间的拓扑快速变化导致车间链路质量不稳定,从而使得数据转发的效率降低。对此,本文面向城市路网提出一种基于路段实时评分的智能网联车数据转发模型(Road section scoring-based data forwarding model for intelligent connected vehicles,RSSM)。首先,根据车辆密度将路段分为两部分,并分别对两部分路段上节点间的连通性进行建模,之后得到整条路段上节点间的连通性作为该路段的得分。然后,计算整个路网中所有路段上节点间的连通性并将其作为上述路段的得分,依据整个路网对路段的评分实现源节点到目的节点的动态路径规划,保障所规划的数据转发在整体上最优。最后,在结合实验平台NS3与SUMO上进行仿真对比,实验结果表明:与同类算法相比,本文提出的数据转发模型RSSM在数据投递成功率和时延方面均优于同类数据转发方法。

    Abstract:

    The rapid change of the topology for the intelligent connected vehicles results in the instability of communication links, which reduces the efficiency of data forwarding. To address these challenges, the paper proposes a road section scoring-based data forwarding model for intelligent connected vehicles (RSSM) for urban scenario. Firstly, the road segment is divided into two parts by the vehicle density, and the connectivity for the two parts of the road is modeled, separately. Then, the connectivity between the nodes in the whole road segment is obtained as the scoring of the road segment. Then, the connectivity for all road segments in the whole road network is calculated and regarded as the scoring of the corresponding road segments. Next, the dynamic path calculation from the source node to the destination node is realized by the scoring of the whole road network, which ensures that the planned routing is optimal. Finally, RSSM is implemented on the NS3 and SUMO experimental platform. Experimental results show that the proposed RSSM is superior to the similar data forwarding methods in terms of the successful rate of data delivery and average end-to-end delay.

    参考文献
    相似文献
    引证文献
引用本文

毕俊蕾,朱宗强,李致远.智能网联车环境下基于路段评分的数据转发模型[J].数据采集与处理,2019,34(6):1030-1038

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-06-06
  • 最后修改日期:2019-09-19
  • 录用日期:
  • 在线发布日期: 2019-12-13