硅胶颗粒中杂质在线识别方法研究及剔除装置设计
作者:
作者单位:

1.中国海洋大学工程学院,青岛,266100;2.温州大学机电工程学院,温州,325035

作者简介:

通讯作者:

基金项目:


Online Identification Method and Design of Removing Device for Impurities in Silicon Particles
Author:
Affiliation:

1.College of Engineering, Ocean University of China, Qingdao, 266100, China;2.College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了实现硅胶颗粒中杂质的自动剔除,提出杂质识别算法,并设计了自动化的杂质剔除装置。首先通过摄像机实时采集硅胶散料图像,利用Visual C++ 结合OpenCV将图像进行预处理、形态学运算及边缘检测等过程,将杂质识别定位。然后基于RS-232通讯协议实现与单片机通讯,传递杂质的位置信息,控制相应的剔除机构动作,最终实现硅胶与杂质的分离。经验证,本系统能够有效地对杂质进行识别和剔除,其剔除率达到95%,满足设计要求。本装置采用了“分区域剔除算法”结合“高压气体”的方式进行杂质剔除,具有动作响应快、剔除精度高的优点,有效提高生产效率,降低生产成本。

    Abstract:

    In order to realize the automatic removing of impurities in silicon particles, an impurity identification algorithm is presented and an automated impurity removal device is designed. Firstly, an image of silicon particles is collected by the camera in real time, and it is preprocessed, morphologically operated, and edge detected by Visual C++ combined with OpenCV to identify and locate the impurity. Then, based on the RS-232 protocol, the communication with the single-chip microcomputer is realized, the position information of the impurity is transmitted, and the action of the corresponding device is controlled. Finally, the separation of the silicon and the impurity is accomplished. It is verified that the system can effectively identify and remove impurities, and the removal rate reaches 95%, which meets the design requirements. The device adopts the “subregional removal algorithm” combined with the “high-pressure gas” method for impurity removal, and has the advantages of fast action response and high rejection precision, improving production efficiency and reducing production cost.

    参考文献
    相似文献
    引证文献
引用本文

云宏霞,贾天代,刘思杰,梅宁.硅胶颗粒中杂质在线识别方法研究及剔除装置设计[J].数据采集与处理,2019,34(5):934-941

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-09-13
  • 最后修改日期:2019-03-27
  • 录用日期:
  • 在线发布日期: 2019-10-22