一种新型的半导体SMA缺陷识别方法
作者:
作者单位:

江南大学物联网工程学院,无锡,214122

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61672265国家自然科学基金(61672265)资助项目。


New Method of Semiconductor SMA Defect Recognition
Author:
Affiliation:

College of Internet of Things Engineering ,Jiangnan University ,Wuxi,214122,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对半导体器件在封装工艺中出现表面缺陷,及缺陷形态多样性和不可预测性而带来的模型适应性低等问题,提出了双向二维主成分分析和改进的卷积神经网络相结合的缺陷识别方法。首先为克服样本不均匀带来的识别精度低问题,对训练图像进行反射变换等操作构造虚拟样本,然后使用双向二维主成分分析法(Bilateral two-dimensional principal component analysis,Bi-2DPCA)对图像进行降维压缩,提取图像主要特征,再由改进的AlexNet网络进行缺陷识别分类,并提出正态随机采样层,将其加在AlexNet网络的卷积层后进行下采样,同时在全连接层中引入DropConnect来提高网络的泛化性能。实验表明,提出的算法较相关算法有较高的识别率,并在实际的表面贴装工程(Surface mount assembly,SMA)塑封图像数据上得到了验证,同时该算法具有较好的泛化性能。

    Abstract:

    A semiconductor defect recognition method based on Bi-2DPCA and improved convolution neural network is proposed to solve the surface defect problem of semiconductor devices in packaging process. In view of overcoming the problem of low recognition accuracy caused by uneven samples, the training image is transformed to construct virtual samples, and then the image is compressed with Bi-2DPCA to extract the main features of the image. The improved AlexNet network is used for defect recognition and classification. To solve the problem of low adaptability of the model caused by the diversity and unpredictability of the diode plastic sealing surface, a normal random sampling layer is proposed, which is added to the convolution layer of the AlexNet network for lower sampling. At the same time, DropConnect is introduced in the full connection layer to improve the generalization performance of the network.Experiments show that the proposed algorithm has a higher recognition rate than the related algorithm, and is verified on the SMA surface image set. At the same time, the algorithm has a good generalization performance.

    参考文献
    相似文献
    引证文献
引用本文

胡佳美,吴锡生.一种新型的半导体SMA缺陷识别方法[J].数据采集与处理,2019,34(5):924-933

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-10-29
  • 最后修改日期:2018-11-25
  • 录用日期:
  • 在线发布日期: 2019-10-22