融合遗传算法和关联规则的数据挖掘方法改进
作者:
作者单位:

1.上海理工大学光电信息与计算机工程学院,上海,200093;2.上海现代光学系统重点实验室,上海,200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61472256 61170277;61703277)资助项目;上海市教委科研创新 12zz137;沪江基金 C14002国家自然科学基金(61472256,61170277,61703277)资助项目;上海市教委科研创新(12zz137)重点资助项目;沪江基金(C14002)资助项目。


Improvement of Data Mining Method Combining Genetic Algorithm and Association Rules
Author:
Affiliation:

1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China;2.Shanghai Key Lab of Modern Optical System, Shanghai, 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出了一种融合改进遗传算法(Genetic algorithm, GA)和关联规则的数据挖掘方法,首先将GA交叉算子和变异算子进行自适应改进,使其在迭代过程中能够根据函数适应度值自适应调节;然后将改进后的自适应GA融入到关联规则中,充分利用GA良好的全局搜索能力,提高处理海量数据关联规则的挖掘效率。为了避免无用规则,减少不相关性的存在,在此基础上融入亲密度以提高关联规则的可靠性。在Hadoop大数据平台上通过分析交通数据验证优化后的算法,与传统方法相比,该方法提高了算法的收敛速度和鲁棒性。

    Abstract:

    A data mining method is presented by combining improved genetic algorithm (GA) and association rules. Firstly, the crossover operator and mutation operator of GA are improved adaptively so that they can adjust adaptively according to the fitness value of function in the process of iteration. The improved adaptive GA is integrated into association rules to make full use of the good global search ability of GA and improve the mining efficiency of association rules dealing with mass data. To avoid useless rules and reduce the existence of irrelevance, intimacy is added to improve the reliability of association rules. The optimized algorithm is verified by analyzing traffic data on Hadoop big data platform. Compared with traditional methods, this method improves the convergence speed and robustness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

孙红,李存进.融合遗传算法和关联规则的数据挖掘方法改进[J].数据采集与处理,2019,34(5):863-871

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-10-11
  • 最后修改日期:2019-02-04
  • 录用日期:
  • 在线发布日期: 2019-10-22