密度空间与密度峰值聚类的欠定混合矩阵估计
作者:
作者单位:

1.广州商学院信息技术与工程学院,广州,511363;2.湖南大学信息科学与工程学院,长沙,410082;3.北京理工大学管理与经济学院,北京,100081

作者简介:

通讯作者:

基金项目:

国家自然科学基金 60572183国家自然科学基金( 60572183 )资助项目。


Underdetermined Mixing Matrix Estimation Based on DBSCAN and CFSFDP
Author:
Affiliation:

1.School of Information Technology and Engineering, Guangzhou College of Commerce, Guangzhou, 511363, China;2.College of Information Science and Engineering, Hunan University, Changsha, 410082, China;3.School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对欠定盲源分离问题, 提出了增强信号稀疏性的方法,并把具有噪声的基于密度空间聚类与寻找密度峰值聚类相结合用于估计混合矩阵。首先,把时域观测信号变换成时频域的稀疏信号,通过单源点检测突出信号的线性聚类特性,并采用镜像映射将线性聚类转变成致密聚类以便于进行密度基的聚类分析;然后,利用密度空间聚类搜寻密集数据堆中高密度的点和与之相应的邻域,以自动形成聚类簇的数量和初步聚类中心;最后,把获得的聚类数量作为密度峰值聚类的输入参数,在数据簇的范围内搜索其密度峰值以实现对聚类中心位置的进一步修正。以上方法不仅可提高混合矩阵的估计精度,而且估计量具有较高的一致性。

    Abstract:

    For the problem of underdetermined blind source separation (UBSS), a method to enhance signal sparsity is proposed, and the density based spatial clustering of applications with noise (DBSCAN) combined with the clustering by fast search and find of density peaks (CFSFDP) is used to estimate the mixing matrix. Firstly, the time domain observed signals are transformed into sparse signals in the time-frequency domain, the single-source-point (SSP) detection is used to highlight the linear clustering characteristics, and the mirroring mapping is used to transform the linear clustering into compact clustering for density-based clustering analysis. Then, in the dense data heaps, the DBSCAN is used to search for high-density points and their corresponding neighborhoods to automatically find the number of clusters and the initial cluster centers. Finally, the number of clusters is used as the input parameter of CFSFDP, and the corresponding density peaks are searched by CFSFDP in the range of data clusters to achieve further correction of the cluster centers position. The above method not only improves the estimation accuracy of the underdetermined mixing matrix, but also provides a highly consistent estimator.

    参考文献
    相似文献
    引证文献
引用本文

何选森,何帆.密度空间与密度峰值聚类的欠定混合矩阵估计[J].数据采集与处理,2019,34(5):819-830

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-04-02
  • 最后修改日期:2019-07-19
  • 录用日期:
  • 在线发布日期: 2019-10-22