大规模MIMO系统上行链路中改进的混合迭代检测算法
作者:
作者单位:

南京邮电大学通信与信息工程学院,南京,210003

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61501248,61471202,61501254)资助项目。


Improved Hybrid Iterative Detection Algorithm for Uplink Massive MIMO System
Author:
Affiliation:

College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    信号检测的任务是通过基站接收到的信号来估计出用户的发送信号。在大规模MIMO系统上行中,基于最速下降(Steepest descent,SD)算法和高斯-赛得尔(Gauss Seidel,GS)迭代的混合迭代(SDGS)算法解决了最小均方误差(Minimum mean square error,MMSE)算法中矩阵求逆的运算问题,将复杂度从O(K3)降为O(K2)(其中K为用户数)。同时,SD算法有很好收敛方向的特性加快了检测速度。本文基于SDGS算法,改进了其中对数似然比(Log likelihood ratio,LLR)的计算,在保持低复杂度(O(K2))的同时,改善检测性能。仿真结果表明,经过几次迭代后,改进后的混合迭代算法收敛较快并接近MMSE检测性能。

    Abstract:

    The task of signal detection is to estimate the users’ sending signal through the signal received by the base station. For uplink massive multiple-input-multiple-output (MIMO) system, a hybrid iterative detection algorithm called SDGS based on steepest descent (SD) algorithm and Gauss Seidel (GS) iteration is proposed. The algorithm can solve the problem of matrix inverse in minimum mean square error (MMSE) algorithm and reduce the computational complexity from O(K3) to O(K2), where K is the number of users. Meanwhile, the SD algorithm has a good convergence direction, which speeds up convergence in the iteration. In this paper, a further improved method to compute the log likelihood ratio (LLR) is proposed to improve the detection performance while the complexity is kept of at the level of O(K2). Simulation results show that the improved hybrid iterative algorithm can converge rapidly and approach the performance of the MMSE algorithm with only a small number of iterations.

    参考文献
    相似文献
    引证文献
引用本文

季荣峰,何雪云,梁彦.大规模MIMO系统上行链路中改进的混合迭代检测算法[J].数据采集与处理,2019,34(4):642-648

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-01-16
  • 最后修改日期:2018-03-28
  • 录用日期:
  • 在线发布日期: 2019-09-01