基于ActionVLAD池化与分层深度学习网络的组群行为识别方法
作者:
作者单位:

青岛科技大学信息科学技术学院,青岛,266100

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61672305;国家青年科学基金 61702295国家自然科学基金(61672305)资助项目;国家青年科学基金(61702295)资助项目。


Group Behavior Recognition Method Based on ActionVLAD Pooling and Hierarchical Deep Learning Network
Author:
Affiliation:

School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, 266100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    构建端到端的深度学习网络结合局部聚合描述符(Action vector of locally aggregated descriptor, ActionVLAD)池化层和多层长短时记忆(Long short time memory,LSTM)解决组群行为识别问题。在传统的单一图像信息(Red Green Blue, RGB)作为深度学习网络的输入基础上,添加密集光流信息(Dense_flow),描述视频帧间的运动,作为双流网络的输入;通过底层LSTM对特征信息进行建模,由融合的双流特征来表示个人行为;而ActionVLAD池化层可以对不同时间、图片不同位置的特征进行融合,从而更好地融合个人信息;最后顶层LSTM连接Softmax分类器,通过融合的个人信息判断组群活动。在Collective activity dataset数据集上的测试实验获得了82.3%的平均识别精度。

    Abstract:

    In group behavior recognition, the entire group behavior can be inferred by detecting the behavior of each person in the group over a period of time. An end-to-end deep learning network combined with action vector of locally aggregated descriptor (ActionVLAD) pooling layer and multi-layer long short time memory (LSTM) is constructed to solve the group behavior recognition problem. Based on the input of traditional single image information (Red Green Blue, RGB) as a deep learning network, dense optical flow information (Dense_flow)is added to describe the motion between video frames as the input of the two-stream network. The feature information is modeled by the underlying LSTM, and the individual behavior is represented by the fused two stream features. While the ActionVLAD pooling layer can fuse features at different time and different positions of the picture, which can better integrate personal information. Finally the top LSTM is connected with the Softmax classifier, in which group activity is judged by the merged personal information. The test on Collective activity dataset obtains an average recognition accuracy of 82.3%.

    参考文献
    相似文献
    引证文献
引用本文

王传旭,姜成恒.基于ActionVLAD池化与分层深度学习网络的组群行为识别方法[J].数据采集与处理,2019,34(4):585-593

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-12-11
  • 最后修改日期:2019-04-15
  • 录用日期:
  • 在线发布日期: 2019-09-01