混合分层抽样与协同过滤的旅游景点推荐模型研究
作者:
作者单位:

1.华东交通大学信息工程学院, 南昌, 330013;2.华东交通大学软件学院, 南昌, 330013;3.武汉大学计算机学院, 武汉, 430072

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61762038,61861016;江西省科技厅自然科学基金 20171BAB202023;教育部人文社会科学研究规划基金 17YJAZH117,16YJAZH029;江西省科技厅重点研发计划 20171BBG70093;江西省社会科学规划项目 16TQ02国家自然科学基金(61762038,61861016)资助项目;江西省科技厅自然科学基金(20171BAB202023)资助项目;教育部人文社会科学研究规划基金(17YJAZH117,16YJAZH029)资助项目;江西省科技厅重点研发计划(20171BBG70093)资助项目;江西省社会科学规划项目(16TQ02)资助项目。


Recommendation Model of Tourist Attractions by Fusing Hierarchical Sampling and Collaborative Filtering
Author:
Affiliation:

1.School of Information Engineering, East China Jiaotong University, Nanchang, 330013, China;2.Software School, East China Jiaotong University, Nanchang, 330013, China;3.Computer School, Wuhan University, Wuhan, 430072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    采用问卷调查与自动抓取相结合的方式,采集用户信息、用户评分等旅游数据,对数据做分层抽样,生成包含用户旅游喜好信息的“智慧旅游”数据集。围绕该数据集,预处理用户评分并执行基于用户聚类的协同过滤算法,以计算目标用户与聚类中心的相似性。结合分层抽样模型生成的旅游喜好信息,输出混合推荐列表。实验结果表明:相比基线,混合分层抽样与协同过滤的推荐模型对评分预测的均方根误差(Root mean square error, RMSE)和平均绝对误差(Mean absolute error,MAE)分别降低11.5%~64.9%和18.8%~47.7%。混合推荐的准确率和召回率相比基线也有较大程度提升,旅游景点推荐效果良好。

    Abstract:

    By combining the method of questionnaire survey and automatic crawling, a lot of useful tourist information such as users’ personal information, users’ ratings of tourist attractions and other tourism data are obtained. Based on the crawled tourism data, a hierarchical sampling method is applied in turn to generate the “Smart Travel” dataset which contains the important demographic information. Then a user clustering?based collaborative filtering algorithm is implemented to compute the semantic similarity between target user and each clustering center after the users’ ratings of tourist attractions in the “Smart Travel” dataset is preprocessed. Finally, a hybrid recommendation list is generated by absorbing the demographic information obtained by the hierarchical sampling model. Experimental results show that compared with the traditional method, two evaluating indicators like the root mean square error (RMSE) and the mean absolute error (MAE) of the presented algorithm reduce 11.5%—64.9% and 18.8%—47.7%, respectively. Meanwhile, compared with the main baselines, the recommendation precision gets a large improvements as well as the recall rate and better recommendation results are obtained ultimately.

    参考文献
    相似文献
    引证文献
引用本文

李广丽,朱涛,袁天,滑瑾,张红斌.混合分层抽样与协同过滤的旅游景点推荐模型研究[J].数据采集与处理,2019,34(3):566-576

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-01-18
  • 最后修改日期:2019-04-09
  • 录用日期:
  • 在线发布日期: 2019-06-12