基于彩色-深度视频和CLDS的手语识别
作者:
作者单位:

青岛科技大学信息科学技术学院, 青岛,266061

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61472196,61672305;山东省重点研发计划 2017GGX10127国家自然科学基金(61472196,61672305)资助项目;山东省重点研发计划(2017GGX10127)资助项目。


Sign Language Recognition Based on Color-Depth Videos and CLDS
Author:
Affiliation:

College of Science and Technology, Qingdao University of Science and Technology, Qingdao,266061,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种基于彩色-深度视频和复线性动态系统(Complex linear dynamic system, CLDS)的手语识别方法,可以保证时序建模数据与原始数据严格对应,准确刻画手语特征,从而显著提高分类精度。利用深度视频补偿RGB视频中的缺失信息,提取手语视频运动边界直方图(Motion boundary histogram, MBH)特征,得到每种行为的特征矩阵。对特征矩阵进行CLDS时序建模,输出能唯一表示该类手语视频的描述符M=(A,C),然后利用子空间角度计算各模型之间的相似度;通过改进的K最近邻(K-nearest neighbors, KNN)算法得到最终分类结果。在中国手语数据集(Chinese sign language, CSL)上的实验表明,本文方法与现有的手语识别方法相比,具有更高的识别率。

    Abstract:

    This paper proposes a sign language recognition method based on color-depth videos and complex linear dynamic system (CLDS), which ensures that the time series modeling data can strictly correspond to the original data and accurately characterize the sign language features. Thus the classification precision is improved significantly. The depth videos are used to compensate the missing information of RGB videos, and the motion boundary histogram (MBH) features are extracted from the sign language videos to obtain the feature matrix of each behavior. The feature matrixes are modelled using CLDS method with output of the descriptor M=(A, C) which can uniquely represent the sign language video. Then the similarities between the models are calculated utilizing the subspace angles and the improved KNN algorithm is presented to achieve the final classification result. Experiments on the Chinese sign language dataset (CSL) show that the proposed sign language recognition approach has higher precision than many existing methods.

    参考文献
    相似文献
    引证文献
引用本文

张淑军,彭中,王传旭.基于彩色-深度视频和CLDS的手语识别[J].数据采集与处理,2019,34(1):91-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-02-27
  • 最后修改日期:2018-03-14
  • 录用日期:
  • 在线发布日期: 2019-04-12