分层式宽度模型的实时车型识别算法
作者:
作者单位:

1. 南通大学电子信息学院,南通,226019;2. 南通智能信息技术联合研究中心,南通, 226019;3. 通科微电子学院,南通,226019

作者简介:

通讯作者:

基金项目:

国家自然科学基金 61601248 ; 江苏省高校自然科学研究面上项目 16KJB510036 ; 南通市科技计划 MS12016025 ; 南通大学-南通智能信息技术联合研究中心 KFKT2017B04 ; 国家级大学生创新创业训练计划 201810304019Z 国家自然科学基金(61601248)资助项目;江苏省高校自然科学研究面上项目(16KJB510036)资助项目;南通市科技计划(MS12016025)资助项目;南通大学-南通智能信息技术联合研究中心(KFKT2017B04)资助项目;国家级大学生创新创业训练计划(201810304019Z)资助项目。


Real-Time Vehicle Type Recognition Algorithm Based on Layered Broad Model
Author:
Affiliation:

1. School of Electronic Information, Nantong University, Nantong, 226019, China ;2. Nantong Research Institute for Advanced Communication Technologies, Nantong, 226019, China ;3. Tongke School of Microelectronics, Nantong, 226019, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    车辆车型识别技术在智能交通系统中至关重要,现有的车辆车型识别技术难以兼顾识别精度和识别速度。针对高速公路环境下的车型识别问题,提出了浅层特征层与宽度特征层相结合的分层式宽度模型实时进行车型识别。首先利用颜色空间转换和多通道HOG算法相结合,减少光照环境的影响,同时实现对车辆图像的特征提取,结合PCA降维技术,降低计算复杂度;然后对图像特征进行稀疏表示和非线性映射,减少图像特征之间的相关性;最后用岭回归学习算法对提取的样本特征进行训练,求出样本特征与样本标签之间的权重系数,实现对车辆车型的识别。在BIT-Vehicle车型数据库的实验结果表明,本文所提算法的识别精度为96.69%,识别速度高达70.3帧/s。本文算法在提高车型识别精度的同时保证了实时性,在识别精度和速度方面优于其他算法。

    Abstract:

    Vehicle type recognition has become critical in intelligent transportation systems. The existing technology about vehicle type recognition is difficult to balance the recognition accuracy and recognition speed. Aiming at the problem of vehicle type recognition in the highway environment, a layered broad model combining the shallow feature layer with the broad feature layer is proposed, which can recognize the vehicle in real time. Firstly, the combination of color space conversion and multi-channel HOG algorithm is used to reduce the influence of illumination environment and realize the feature extraction of vehicle image. Combined with PCA dimension reduction technology, the computational complexity is reduced. Then sparse representation and nonlinear mapping of image features reduce correlation between image features. Finally, the ridge regression learning algorithm is used to train the extracted sample features, and the weight coefficient between the sample features and the sample tags is obtained to realize the recognition of the vehicle type. Experimental results on the BIT-Vehicle database show that the recognition accuracy of the proposed method is 96.69%, and the recognition speed is as high as 70.3 fps. The proposed algorithm can effectively enhance the feature expression ability and improve the vehicle type recognition accuracy, and ensure the real-time performance, which is superior to other algorithms in recognition accuracy and speed.

    参考文献
    相似文献
    引证文献
引用本文

李洪均,周泽.分层式宽度模型的实时车型识别算法[J].数据采集与处理,2019,34(1):80-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-10-25
  • 最后修改日期:2018-12-05
  • 录用日期:
  • 在线发布日期: 2019-04-12