双向时域特征流盲去运动模糊方法
作者:
作者单位:

北京理工大学光电学院,北京,100081

作者简介:

通讯作者:

基金项目:

国家自然科学基金 11774031国家自然科学基金(11774031)资助项目。


Bidirectional Time-Domain Feature Flow Blind Motion Deblurring Algorithm
Author:
Affiliation:

School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    便携式成像设备在日常的生活中已经无处不在,但是因为拍摄时的抖动或者场景中的快速运动物体,所拍摄的图像或视频经常存在模糊现象,造成图像重要细节丢失。为了将模糊的视频图像恢复到清晰的状态,结合近年来的研究热点——生成对抗网络,本文提出了一种新颖的端到端的双向时域特征流盲去运动模糊方法。该方法充分利用时空连续特征信息,在三连帧图像间建立双向的时域特征传输通道。多阶段自编码去模糊网络结构和并行编码-混合解码融合方案能够融合三连帧图像多通道内容信息,并恢复出更加清晰的视频图像。实验结果表明,在不牺牲较大时间代价前提下,本文提出的方法在传统的质量评价指标(峰值信噪比和结构相似性)和视觉质量上均优于现有的去模糊算法。

    Abstract:

    Portable imaging devices are ubiquitous in everyday life. However, as the hand jitter or the fast moving objects in the scene during shooting process, the captured image or video is often blurred, causing important details loss. In order to restore the blurred video and image to a clear state, we combine the recent research hotspots—Generative adversarial network, and propose a novel end-to-end bidirectional time-domain feature flow blind motion deblurring algorithm. The algorithm makes full use of the feature information of spatio-temporal continuity constraint to establish a bidirectional transmission channel of time-domain features between the adjacent frames. The multi-stage autoencoder deblurring network structure and the parallel coding and hybrid decoding fusion solution can fuse the multi-channel content information of a frame triplet and restore a clearer frame for a video. Experimental results show that the proposed algorithm is superior to the existing advanced algorithms on the traditional image quality evaluation indexes, i.e., peak signal to noise ratio (PSNR) and structural similarity (SSIM), and visual quality within acceptable time cost.

    参考文献
    相似文献
    引证文献
引用本文

赵跃进,刘文龙,刘明,董立泉,惠梅.双向时域特征流盲去运动模糊方法[J].数据采集与处理,2019,34(1):32-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-11-26
  • 最后修改日期:2018-12-11
  • 录用日期:
  • 在线发布日期: 2019-04-12